File size: 722 Bytes
4d3ea5b c4a6283 4d3ea5b c4a6283 5f86ae9 4d3ea5b c4a6283 4d3ea5b c4a6283 4d3ea5b c4a6283 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
import gradio as gr
from transformers import pipeline
# Load your model from the Hugging Face model hub
model_name = "sujra/insurance_Model"
qa_pipeline = pipeline("question-answering", model=model_name, tokenizer=model_name, timeout=120)
def get_answer(question):
answer = qa_pipeline(question=question, max_length=128, batch_size=4)['answer'] # Reduce batch size and set max_length
return answer
# Define the input and output components for the UI
question_input = gr.inputs.Textbox(lines=2, label="Enter your question")
output_text = gr.outputs.Textbox(label="Answer")
# Create the UI
gr.Interface(fn=get_answer, inputs=question_input, outputs=output_text, title="Insurance Question Answering").launch()
|