|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import re |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from torchvision.utils import make_grid |
|
|
|
|
|
|
|
def img2tensor(imgs, bgr2rgb=True, float32=True): |
|
"""Numpy array to tensor. |
|
|
|
Args: |
|
imgs (list[ndarray] | ndarray): Input images. |
|
bgr2rgb (bool): Whether to change bgr to rgb. |
|
float32 (bool): Whether to change to float32. |
|
|
|
Returns: |
|
list[tensor] | tensor: Tensor images. If returned results only have |
|
one element, just return tensor. |
|
""" |
|
|
|
def _totensor(img, bgr2rgb, float32): |
|
if img.shape[2] == 3 and bgr2rgb: |
|
if img.dtype == 'float64': |
|
img = img.astype('float32') |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = torch.from_numpy(img.transpose(2, 0, 1)) |
|
if float32: |
|
img = img.float() |
|
return img |
|
|
|
if isinstance(imgs, list): |
|
return [_totensor(img, bgr2rgb, float32) for img in imgs] |
|
return _totensor(imgs, bgr2rgb, float32) |
|
|
|
|
|
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): |
|
"""Convert torch Tensors into image numpy arrays. |
|
|
|
After clamping to [min, max], values will be normalized to [0, 1]. |
|
|
|
Args: |
|
tensor (Tensor or list[Tensor]): Accept shapes: |
|
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); |
|
2) 3D Tensor of shape (3/1 x H x W); |
|
3) 2D Tensor of shape (H x W). |
|
Tensor channel should be in RGB order. |
|
rgb2bgr (bool): Whether to change rgb to bgr. |
|
out_type (numpy type): output types. If ``np.uint8``, transform outputs |
|
to uint8 type with range [0, 255]; otherwise, float type with |
|
range [0, 1]. Default: ``np.uint8``. |
|
min_max (tuple[int]): min and max values for clamp. |
|
|
|
Returns: |
|
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of |
|
shape (H x W). The channel order is BGR. |
|
""" |
|
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): |
|
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') |
|
|
|
if torch.is_tensor(tensor): |
|
tensor = [tensor] |
|
result = [] |
|
for _tensor in tensor: |
|
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) |
|
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) |
|
|
|
n_dim = _tensor.dim() |
|
if n_dim == 4: |
|
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() |
|
img_np = img_np.transpose(1, 2, 0) |
|
if rgb2bgr: |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) |
|
elif n_dim == 3: |
|
img_np = _tensor.numpy() |
|
img_np = img_np.transpose(1, 2, 0) |
|
if img_np.shape[2] == 1: |
|
img_np = np.squeeze(img_np, axis=2) |
|
else: |
|
if rgb2bgr: |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) |
|
elif n_dim == 2: |
|
img_np = _tensor.numpy() |
|
else: |
|
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') |
|
if out_type == np.uint8: |
|
|
|
img_np = (img_np * 255.0).round() |
|
img_np = img_np.astype(out_type) |
|
result.append(img_np) |
|
if len(result) == 1: |
|
result = result[0] |
|
return result |
|
|
|
|
|
def resize_numpy_image_area(image, area=512 * 512): |
|
h, w = image.shape[:2] |
|
k = math.sqrt(area / (h * w)) |
|
h = int(h * k) - (int(h * k) % 16) |
|
w = int(w * k) - (int(w * k) % 16) |
|
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA) |
|
return image |
|
|
|
|
|
|
|
def convert_flux_lora_to_diffusers(old_state_dict): |
|
new_state_dict = {} |
|
orig_keys = list(old_state_dict.keys()) |
|
|
|
def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None): |
|
down_weight = sds_sd.pop(sds_key) |
|
up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight")) |
|
|
|
|
|
num_splits = len(ait_keys) |
|
if dims is None: |
|
dims = [up_weight.shape[0] // num_splits] * num_splits |
|
else: |
|
assert sum(dims) == up_weight.shape[0] |
|
|
|
|
|
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys] |
|
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys] |
|
|
|
|
|
ait_sd.update({k: down_weight for k in ait_down_keys}) |
|
|
|
|
|
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) |
|
|
|
for old_key in orig_keys: |
|
|
|
if 'double_blocks' in old_key: |
|
block_num = re.search(r"double_blocks_(\d+)", old_key).group(1) |
|
new_key = f"transformer.transformer_blocks.{block_num}" |
|
|
|
if "proj_lora1" in old_key: |
|
new_key += ".attn.to_out.0" |
|
elif "proj_lora2" in old_key: |
|
new_key += ".attn.to_add_out" |
|
elif "qkv_lora2" in old_key and "up" not in old_key: |
|
handle_qkv( |
|
old_state_dict, |
|
new_state_dict, |
|
old_key, |
|
[ |
|
f"transformer.transformer_blocks.{block_num}.attn.add_q_proj", |
|
f"transformer.transformer_blocks.{block_num}.attn.add_k_proj", |
|
f"transformer.transformer_blocks.{block_num}.attn.add_v_proj", |
|
], |
|
) |
|
|
|
elif "qkv_lora1" in old_key and "up" not in old_key: |
|
handle_qkv( |
|
old_state_dict, |
|
new_state_dict, |
|
old_key, |
|
[ |
|
f"transformer.transformer_blocks.{block_num}.attn.to_q", |
|
f"transformer.transformer_blocks.{block_num}.attn.to_k", |
|
f"transformer.transformer_blocks.{block_num}.attn.to_v", |
|
], |
|
) |
|
|
|
|
|
if "down" in old_key: |
|
new_key += ".lora_A.weight" |
|
elif "up" in old_key: |
|
new_key += ".lora_B.weight" |
|
|
|
|
|
elif 'single_blocks' in old_key: |
|
block_num = re.search(r"single_blocks_(\d+)", old_key).group(1) |
|
new_key = f"transformer.single_transformer_blocks.{block_num}" |
|
|
|
if "proj_lora" in old_key: |
|
new_key += ".proj_out" |
|
elif "qkv_lora" in old_key and "up" not in old_key: |
|
handle_qkv( |
|
old_state_dict, |
|
new_state_dict, |
|
old_key, |
|
[ |
|
f"transformer.single_transformer_blocks.{block_num}.attn.to_q", |
|
f"transformer.single_transformer_blocks.{block_num}.attn.to_k", |
|
f"transformer.single_transformer_blocks.{block_num}.attn.to_v", |
|
], |
|
) |
|
|
|
if "down" in old_key: |
|
new_key += ".lora_A.weight" |
|
elif "up" in old_key: |
|
new_key += ".lora_B.weight" |
|
|
|
else: |
|
|
|
new_key = old_key |
|
|
|
|
|
if "qkv" not in old_key and 'embedding' not in old_key: |
|
new_state_dict[new_key] = old_state_dict.pop(old_key) |
|
|
|
|
|
|
|
|
|
return new_state_dict |
|
|