DreamO / dreamo /utils.py
yanze's picture
init
92c3d7f
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import re
import cv2
import numpy as np
import torch
from torchvision.utils import make_grid
# from basicsr
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
return _totensor(imgs, bgr2rgb, float32)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if torch.is_tensor(tensor):
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result
def resize_numpy_image_area(image, area=512 * 512):
h, w = image.shape[:2]
k = math.sqrt(area / (h * w))
h = int(h * k) - (int(h * k) % 16)
w = int(w * k) - (int(w * k) % 16)
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
return image
# reference: https://github.com/huggingface/diffusers/pull/9295/files
def convert_flux_lora_to_diffusers(old_state_dict):
new_state_dict = {}
orig_keys = list(old_state_dict.keys())
def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
down_weight = sds_sd.pop(sds_key)
up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight"))
# calculate dims if not provided
num_splits = len(ait_keys)
if dims is None:
dims = [up_weight.shape[0] // num_splits] * num_splits
else:
assert sum(dims) == up_weight.shape[0]
# make ai-toolkit weight
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
# down_weight is copied to each split
ait_sd.update({k: down_weight for k in ait_down_keys})
# up_weight is split to each split
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416
for old_key in orig_keys:
# Handle double_blocks
if 'double_blocks' in old_key:
block_num = re.search(r"double_blocks_(\d+)", old_key).group(1)
new_key = f"transformer.transformer_blocks.{block_num}"
if "proj_lora1" in old_key:
new_key += ".attn.to_out.0"
elif "proj_lora2" in old_key:
new_key += ".attn.to_add_out"
elif "qkv_lora2" in old_key and "up" not in old_key:
handle_qkv(
old_state_dict,
new_state_dict,
old_key,
[
f"transformer.transformer_blocks.{block_num}.attn.add_q_proj",
f"transformer.transformer_blocks.{block_num}.attn.add_k_proj",
f"transformer.transformer_blocks.{block_num}.attn.add_v_proj",
],
)
# continue
elif "qkv_lora1" in old_key and "up" not in old_key:
handle_qkv(
old_state_dict,
new_state_dict,
old_key,
[
f"transformer.transformer_blocks.{block_num}.attn.to_q",
f"transformer.transformer_blocks.{block_num}.attn.to_k",
f"transformer.transformer_blocks.{block_num}.attn.to_v",
],
)
# continue
if "down" in old_key:
new_key += ".lora_A.weight"
elif "up" in old_key:
new_key += ".lora_B.weight"
# Handle single_blocks
elif 'single_blocks' in old_key:
block_num = re.search(r"single_blocks_(\d+)", old_key).group(1)
new_key = f"transformer.single_transformer_blocks.{block_num}"
if "proj_lora" in old_key:
new_key += ".proj_out"
elif "qkv_lora" in old_key and "up" not in old_key:
handle_qkv(
old_state_dict,
new_state_dict,
old_key,
[
f"transformer.single_transformer_blocks.{block_num}.attn.to_q",
f"transformer.single_transformer_blocks.{block_num}.attn.to_k",
f"transformer.single_transformer_blocks.{block_num}.attn.to_v",
],
)
if "down" in old_key:
new_key += ".lora_A.weight"
elif "up" in old_key:
new_key += ".lora_B.weight"
else:
# Handle other potential key patterns here
new_key = old_key
# Since we already handle qkv above.
if "qkv" not in old_key and 'embedding' not in old_key:
new_state_dict[new_key] = old_state_dict.pop(old_key)
# if len(old_state_dict) > 0:
# raise ValueError(f"`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.")
return new_state_dict