Spaces:
Sleeping
Sleeping
import gradio as gr | |
from deepface import DeepFace | |
import cv2 | |
import mediapipe as mp | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
import numpy as np | |
import tempfile | |
# Initialize MediaPipe Pose for body bounding box detection | |
mp_pose = mp.solutions.pose | |
def analyze_images(img1, img2): | |
# Option 1: Convert PIL images to NumPy arrays | |
img1_array = np.array(img1) | |
img2_array = np.array(img2) | |
# Option 2: Save images temporarily as JPEG files | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file1: | |
img1.save(temp_file1, format='JPEG') | |
img1_path = temp_file1.name | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file2: | |
img2.save(temp_file2, format='JPEG') | |
img2_path = temp_file2.name | |
# Face comparison with DeepFace, enforce_detection set to False | |
face_result = DeepFace.verify(img1_path, img2_path, model_name='VGG-Face', enforce_detection=False) | |
is_same_person = face_result['verified'] | |
similarity_score = face_result['distance'] | |
# Convert images to OpenCV format | |
img1_cv = cv2.cvtColor(img1_array, cv2.COLOR_RGB2BGR) | |
img2_cv = cv2.cvtColor(img2_array, cv2.COLOR_RGB2BGR) | |
# Body analysis with MediaPipe | |
def get_body_info(image): | |
with mp_pose.Pose(static_image_mode=True) as pose: | |
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
if results.pose_landmarks: | |
landmarks = results.pose_landmarks.landmark | |
# Calculate bounding box height and width | |
x_values = [landmark.x for landmark in landmarks] | |
y_values = [landmark.y for landmark in landmarks] | |
width = max(x_values) - min(x_values) | |
height = max(y_values) - min(y_values) | |
aspect_ratio = height / width if width > 0 else 0 | |
return aspect_ratio, width, height | |
return None, None, None | |
aspect_ratio1, width1, height1 = get_body_info(img1_cv) | |
aspect_ratio2, width2, height2 = get_body_info(img2_cv) | |
# Create a chart to display face and body similarities | |
labels = ['Face Similarity', 'Body Aspect Ratio', 'Body Width', 'Body Height'] | |
values1 = [similarity_score, aspect_ratio1, width1, height1] | |
values2 = [similarity_score, aspect_ratio2, width2, height2] | |
x = np.arange(len(labels)) | |
width = 0.35 | |
fig, ax = plt.subplots() | |
ax.bar(x - width/2, values1, width, label='Image 1') | |
ax.bar(x + width/2, values2, width, label='Image 2') | |
ax.set_ylabel('Scores') | |
ax.set_title('Comparison of Face and Body Features') | |
ax.set_xticks(x) | |
ax.set_xticklabels(labels) | |
ax.legend() | |
# Save and return the chart | |
plt.tight_layout() | |
plt_path = "comparison_chart.png" | |
plt.savefig(plt_path) | |
plt.close(fig) | |
return is_same_person, plt_path | |
# Set up Gradio interface | |
iface = gr.Interface( | |
fn=analyze_images, | |
inputs=[gr.Image(type="pil"), gr.Image(type="pil")], | |
outputs = [gr.Textbox(label="Same Person?"), gr.Image(label="Comparison Chart")], | |
title="Face and Body Similarity Analyzer", | |
description="Upload two images to analyze if they contain the same person and compare body features." | |
) | |
iface.launch() | |