File size: 12,231 Bytes
2a1307e
 
 
 
 
 
 
 
 
 
cf9e3cb
 
 
 
 
2a1307e
 
 
 
 
bdd0236
2a1307e
 
 
cf9e3cb
2a1307e
cf9e3cb
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9e3cb
 
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70475f1
2a1307e
 
70475f1
 
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9e3cb
2a1307e
 
c7d4813
 
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bf97a
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bf97a
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
9003466
2a1307e
 
21bf97a
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import gradio as gr
import pickle
import fasttext
import numpy as np
import os
import torch
import time
from transformers import AutoTokenizer, AutoModel
import torch.nn.functional as F
from openai import AzureOpenAI
from huggingface_hub import hf_hub_download

# Download the FastText model from Hugging Face
model_path_fasttext_raw = hf_hub_download(repo_id="talhasarit41/fasttext", filename="fasttext_raw.bin")
model_path_fasttext_preprocessed = hf_hub_download(repo_id="talhasarit41/fasttext", filename="fasttext_preprocessed.bin")

# Azure OpenAI Configuration
AZURE_API_VERSION = "2024-02-01"

# Model directory
MODEL_DIR = "models"

# Initialize Azure OpenAI client
azure_client = AzureOpenAI(
    api_key=os.getenv("AZURE_OPENAI_API_KEY"),
    api_version=AZURE_API_VERSION,
    azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
)

def generate_e5_embedding(text, model_name='intfloat/multilingual-e5-large'):
    """Generate E5 embeddings for a single text."""
    start_time = time.time()
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)
    
    # Add prefix for E5 models
    text = f"query: {text}"
    
    # Tokenize and generate embedding
    inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Mean pooling
    attention_mask = inputs['attention_mask']
    embeddings = mean_pooling(outputs.last_hidden_state, attention_mask)
    # Normalize embeddings
    embeddings = F.normalize(embeddings, p=2, dim=1)
    
    inference_time = time.time() - start_time
    return embeddings[0].numpy(), inference_time

def generate_e5_instruct_embedding(text, model_name='intfloat/multilingual-e5-large-instruct'):
    """Generate E5-instruct embeddings for a single text."""
    start_time = time.time()
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)
    
    # Add prefix for E5 models
    text = f"query: {text}"
    
    # Tokenize and generate embedding
    inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Mean pooling
    attention_mask = inputs['attention_mask']
    embeddings = mean_pooling(outputs.last_hidden_state, attention_mask)
    # Normalize embeddings
    embeddings = F.normalize(embeddings, p=2, dim=1)
    
    inference_time = time.time() - start_time
    return embeddings[0].numpy(), inference_time

def mean_pooling(token_embeddings, attention_mask):
    """Mean pooling function for E5 models."""
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

def get_azure_embedding(text):
    """Get embeddings from Azure OpenAI API."""
    start_time = time.time()
    response = azure_client.embeddings.create(
        model="text-embedding-3-large",
        input=text
    )
    inference_time = time.time() - start_time
    return np.array(response.data[0].embedding), inference_time

# Load models
def load_models():
    models = {}
    
    # Load pickle models
    with open(os.path.join(MODEL_DIR, 'e5_classifier.pkl'), 'rb') as f:
        models['E5 Classifier'] = pickle.load(f)
    
    with open(os.path.join(MODEL_DIR, 'e5_large_instruct_classifier.pkl'), 'rb') as f:
        models['E5-Instruct Classifier'] = pickle.load(f)
    
    with open(os.path.join(MODEL_DIR, 'azure_classifier.pkl'), 'rb') as f:
        models['Azure Classifier'] = pickle.load(f)

    with open(os.path.join(MODEL_DIR, 'azure_knn_classifier.pkl'), 'rb') as f:
        models['Azure KNN Classifier'] = pickle.load(f)
    
    with open(os.path.join(MODEL_DIR, 'gte_classifier.pkl'), 'rb') as f:
        models['GTE Classifier'] = pickle.load(f)
    
    # Load FastText models
    models['FastText Raw'] = fasttext.load_model(model_path_fasttext_raw)
    models['FastText Preprocessed'] = fasttext.load_model(model_path_fasttext_preprocessed)
    
    return models

def format_results(results):
    """Format results into HTML for better visualization."""
    html = "<div style='font-family: monospace; padding: 10px 20px;'>"
    html += "<table style='width: 100%; border-collapse: collapse; background-color: #1a1a1a; color: #ffffff; margin-bottom: 0;'>"
    html += "<tr style='background-color: #2c3e50;'>"
    html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Model</th>"
    html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Prediction</th>"
    html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Confidence</th>"
    html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Time (sec)</th>"
    html += "</tr>"
    
    for result in results:
        confidence_color = get_confidence_color(result['confidence'])
        html += f"<tr style='background-color: #2d2d2d; border-bottom: 1px solid #404040;'>"
        html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['model']}</td>"
        html += f"<td style='padding: 12px; border: 1px solid #404040;'><span style='color: #4CAF50; font-weight: bold;'>{result['prediction']}</span></td>"
        html += f"<td style='padding: 12px; border: 1px solid #404040;'><span style='color: {confidence_color}; font-weight: bold;'>{result['confidence']:.4f}</span></td>"
        html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['time']:.4f}</td>"
        html += "</tr>"
    
    html += "</table></div>"
    return html

def format_progress(progress_value, desc):
    """Format progress bar HTML."""
    if progress_value >= 100:
        return ""  # Return empty string when complete
    
    html = f"""
    <div style='width: 100%; background-color: #1a1a1a; padding: 10px; border-radius: 5px; margin-bottom: 10px;'>
        <div style='color: white; margin-bottom: 5px;'>{desc}</div>
        <div style='background-color: #2d2d2d; border-radius: 3px;'>
            <div style='background-color: #6b46c1; width: {progress_value}%; height: 20px; border-radius: 3px; transition: width 0.3s ease;'></div>
        </div>
        <div style='color: white; text-align: right; margin-top: 5px;'>{progress_value:.1f}%</div>
    </div>
    """
    return html

def get_confidence_color(confidence):
    """Return color based on confidence score."""
    if confidence >= 0.8:
        return "#00ff00"  # Bright green for high confidence
    elif confidence >= 0.5:
        return "#ffa500"  # Bright orange for medium confidence
    else:
        return "#ff4444"  # Bright red for low confidence

# [Add GTE embedding generation function]
def generate_gte_embedding(text, model_name='Alibaba-NLP/gte-multilingual-base'):
    """Generate GTE embeddings for a single text."""
    start_time = time.time()
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
    
    # Tokenize and generate embedding
    inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        embeddings = outputs.last_hidden_state[:, 0, :]  # [CLS] token
        embeddings = F.normalize(embeddings, p=2, dim=1)  # normalize
    
    inference_time = time.time() - start_time
    return embeddings[0].numpy(), inference_time

# Make predictions (streaming version)
def predict_text_streaming(text):
    try:
        models = load_models()
        results = []
        
        # First yield empty table and progress bar
        yield format_progress(0, "Loading models..."), format_results(results)
        
        # Process FastText models first (they're fastest as they don't need embeddings)
        for model_name, model in models.items():
            if isinstance(model, fasttext.FastText._FastText):
                yield format_progress(10, f"Processing {model_name}..."), format_results(results)
                start_time = time.time()
                prediction = model.predict(text)
                label = prediction[0][0].replace('__label__', '')
                confidence = float(prediction[1][0])
                inference_time = time.time() - start_time
                
                results.append({
                    'model': model_name,
                    'prediction': label,
                    'confidence': confidence,
                    'time': inference_time
                })
                yield format_progress(20, f"Completed {model_name}"), format_results(results)
        
        # Process E5 models
        yield format_progress(30, "Processing E5 Classifier..."), format_results(results)
        e5_embedding, embed_time = generate_e5_embedding(text)
        for model_name in ['E5 Classifier', 'E5-Instruct Classifier']:
            start_time = time.time()
            model = models[model_name]
            embedding_2d = e5_embedding.reshape(1, -1)
            prediction = model.predict(embedding_2d)[0]
            probabilities = model.predict_proba(embedding_2d)[0]
            confidence = max(probabilities)
            inference_time = time.time() - start_time
            
            results.append({
                'model': model_name,
                'prediction': prediction,
                'confidence': confidence,
                'time': inference_time + embed_time
            })
            yield format_progress(40, f"Completed {model_name}"), format_results(results)
        
        # Process Azure models
        yield format_progress(50, "Processing Azure Embeddings..."), format_results(results)
        azure_embedding, embed_time = get_azure_embedding(text)
        for model_name in ['Azure Classifier', 'Azure KNN Classifier']:
            start_time = time.time()
            model = models[model_name]
            embedding_2d = azure_embedding.reshape(1, -1)
            prediction = model.predict(embedding_2d)[0]
            probabilities = model.predict_proba(embedding_2d)[0]
            confidence = max(probabilities)
            inference_time = time.time() - start_time
            
            results.append({
                'model': model_name,
                'prediction': prediction,
                'confidence': confidence,
                'time': inference_time + embed_time
            })
            yield format_progress(70, f"Completed {model_name}"), format_results(results)
        
        # Process GTE model
        yield format_progress(90, "Processing GTE Classifier..."), format_results(results)
        gte_embedding, embed_time = generate_gte_embedding(text)
        model = models['GTE Classifier']
        embedding_2d = gte_embedding.reshape(1, -1)
        prediction = model.predict(embedding_2d)[0]
        probabilities = model.predict_proba(embedding_2d)[0]
        confidence = max(probabilities)
        inference_time = time.time() - start_time
        
        results.append({
            'model': 'GTE Classifier',
            'prediction': prediction,
            'confidence': confidence,
            'time': inference_time + embed_time
        })
        yield format_progress(100, "Completed!"), format_results(results)
        
    except Exception as e:
        yield "", f"<div style='color: red; padding: 20px;'>Error occurred: {str(e)}</div>"

# Create Gradio interface with custom CSS
css = """
.main {
    gap: 0 !important;
}
.contain {
    gap: 0 !important;
}
.feedback {
    margin-top: 0 !important;
    margin-bottom: 0 !important;
}
"""

iface = gr.Interface(
    fn=predict_text_streaming,
    inputs=gr.Textbox(label="Enter text to classify", lines=3),
    outputs=[
        gr.HTML(label="Progress"),
        gr.HTML(label="Model Predictions")
    ],
    title="Text Classification Model Comparison",
    description="Compare predictions from different text classification models (Results stream as they become available)",
    theme=gr.themes.Soft(),
    css=css
)

if __name__ == "__main__":
    iface.launch(debug=True)