File size: 13,728 Bytes
2a1307e
 
 
 
 
 
 
 
 
 
51efdcf
 
cf9e3cb
51efdcf
2a1307e
 
 
 
 
bdd0236
2a1307e
 
 
cf9e3cb
2a1307e
cf9e3cb
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51efdcf
 
 
 
 
 
 
 
2a1307e
51efdcf
 
 
 
2a1307e
 
51efdcf
 
 
 
 
 
 
 
 
 
 
 
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70475f1
2a1307e
 
70475f1
 
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9e3cb
2a1307e
 
c7d4813
 
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51efdcf
 
 
 
 
 
 
2a1307e
51efdcf
2a1307e
51efdcf
2a1307e
 
51efdcf
2a1307e
 
 
 
 
 
 
 
 
 
 
 
51efdcf
 
2a1307e
51efdcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1307e
51efdcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1307e
 
 
 
 
 
51efdcf
2a1307e
 
 
 
51efdcf
 
2a1307e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import gradio as gr
import pickle
import fasttext
import numpy as np
import os
import torch
import time
from transformers import AutoTokenizer, AutoModel
import torch.nn.functional as F
from openai import AzureOpenAI
from dotenv import load_dotenv
from config import get_fasttext_path, is_model_enabled

load_dotenv()

# Azure OpenAI Configuration
AZURE_API_VERSION = "2024-02-01"

# Model directory
MODEL_DIR = "models"

# Initialize Azure OpenAI client
azure_client = AzureOpenAI(
    api_key=os.getenv("AZURE_OPENAI_API_KEY"),
    api_version=AZURE_API_VERSION,
    azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
)

def generate_e5_embedding(text, model_name='intfloat/multilingual-e5-large'):
    """Generate E5 embeddings for a single text."""
    start_time = time.time()
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)
    
    # Add prefix for E5 models
    text = f"query: {text}"
    
    # Tokenize and generate embedding
    inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Mean pooling
    attention_mask = inputs['attention_mask']
    embeddings = mean_pooling(outputs.last_hidden_state, attention_mask)
    # Normalize embeddings
    embeddings = F.normalize(embeddings, p=2, dim=1)
    
    inference_time = time.time() - start_time
    return embeddings[0].numpy(), inference_time

def generate_e5_instruct_embedding(text, model_name='intfloat/multilingual-e5-large-instruct'):
    """Generate E5-instruct embeddings for a single text."""
    start_time = time.time()
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)
    
    # Add prefix for E5 models
    text = f"query: {text}"
    
    # Tokenize and generate embedding
    inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Mean pooling
    attention_mask = inputs['attention_mask']
    embeddings = mean_pooling(outputs.last_hidden_state, attention_mask)
    # Normalize embeddings
    embeddings = F.normalize(embeddings, p=2, dim=1)
    
    inference_time = time.time() - start_time
    return embeddings[0].numpy(), inference_time

def mean_pooling(token_embeddings, attention_mask):
    """Mean pooling function for E5 models."""
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

def get_azure_embedding(text):
    """Get embeddings from Azure OpenAI API."""
    start_time = time.time()
    response = azure_client.embeddings.create(
        model="text-embedding-3-large",
        input=text
    )
    inference_time = time.time() - start_time
    return np.array(response.data[0].embedding), inference_time

# Load models
def load_models():
    models = {}
    
    # Load pickle models only if enabled
    pickle_models = {
        'E5 Classifier': 'e5_classifier.pkl',
        'E5-Instruct Classifier': 'e5_large_instruct_classifier.pkl',
        'Azure Classifier': 'azure_classifier.pkl',
        'Azure KNN Classifier': 'azure_knn_classifier.pkl',
        'GTE Classifier': 'gte_classifier.pkl'
    }
    
    for model_name, filename in pickle_models.items():
        if is_model_enabled(model_name):
            with open(os.path.join(MODEL_DIR, filename), 'rb') as f:
                models[model_name] = pickle.load(f)
    
    # Load FastText models
    if is_model_enabled('FastText Default'):
        models['FastText Default'] = fasttext.load_model(get_fasttext_path('fasttext_default'))
    if is_model_enabled('FastText Preprocessed'):
        models['FastText Preprocessed'] = fasttext.load_model(get_fasttext_path('fasttext_preprocessed'))
    if is_model_enabled('Fasttext WordnNGram 1'):
        models['Fasttext WordnNGram 1'] = fasttext.load_model(get_fasttext_path('word_n_gram_1'))
    if is_model_enabled('Fasttext WordnNGram 2'):
        models['Fasttext WordnNGram 2'] = fasttext.load_model(get_fasttext_path('word_n_gram_2'))
    if is_model_enabled('Fasttext WordnNGram 3'):
        models['Fasttext WordnNGram 3'] = fasttext.load_model(get_fasttext_path('word_n_gram_3'))
    if is_model_enabled('Fasttext Low Overfit'):
        models['Fasttext Low Overfit'] = fasttext.load_model(get_fasttext_path('low_overfit'))
    
    return models

def format_results(results):
    """Format results into HTML for better visualization."""
    html = "<div style='font-family: monospace; padding: 10px 20px;'>"
    html += "<table style='width: 100%; border-collapse: collapse; background-color: #1a1a1a; color: #ffffff; margin-bottom: 0;'>"
    html += "<tr style='background-color: #2c3e50;'>"
    html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Model</th>"
    html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Prediction</th>"
    html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Confidence</th>"
    html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Time (sec)</th>"
    html += "</tr>"
    
    for result in results:
        confidence_color = get_confidence_color(result['confidence'])
        html += f"<tr style='background-color: #2d2d2d; border-bottom: 1px solid #404040;'>"
        html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['model']}</td>"
        html += f"<td style='padding: 12px; border: 1px solid #404040;'><span style='color: #4CAF50; font-weight: bold;'>{result['prediction']}</span></td>"
        html += f"<td style='padding: 12px; border: 1px solid #404040;'><span style='color: {confidence_color}; font-weight: bold;'>{result['confidence']:.4f}</span></td>"
        html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['time']:.4f}</td>"
        html += "</tr>"
    
    html += "</table></div>"
    return html

def format_progress(progress_value, desc):
    """Format progress bar HTML."""
    if progress_value >= 100:
        return ""  # Return empty string when complete
    
    html = f"""
    <div style='width: 100%; background-color: #1a1a1a; padding: 10px; border-radius: 5px; margin-bottom: 10px;'>
        <div style='color: white; margin-bottom: 5px;'>{desc}</div>
        <div style='background-color: #2d2d2d; border-radius: 3px;'>
            <div style='background-color: #6b46c1; width: {progress_value}%; height: 20px; border-radius: 3px; transition: width 0.3s ease;'></div>
        </div>
        <div style='color: white; text-align: right; margin-top: 5px;'>{progress_value:.1f}%</div>
    </div>
    """
    return html

def get_confidence_color(confidence):
    """Return color based on confidence score."""
    if confidence >= 0.8:
        return "#00ff00"  # Bright green for high confidence
    elif confidence >= 0.5:
        return "#ffa500"  # Bright orange for medium confidence
    else:
        return "#ff4444"  # Bright red for low confidence

# [Add GTE embedding generation function]
def generate_gte_embedding(text, model_name='Alibaba-NLP/gte-multilingual-base'):
    """Generate GTE embeddings for a single text."""
    start_time = time.time()
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
    
    # Tokenize and generate embedding
    inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        embeddings = outputs.last_hidden_state[:, 0, :]  # [CLS] token
        embeddings = F.normalize(embeddings, p=2, dim=1)  # normalize
    
    inference_time = time.time() - start_time
    return embeddings[0].numpy(), inference_time

# Make predictions (streaming version)
def predict_text_streaming(text):
    try:
        models = load_models()
        results = []
        
        if not models:
            return "", "<div style='color: red; padding: 20px;'>No models are enabled in the configuration.</div>"
        
        # Calculate progress step based on number of enabled models
        progress_step = 100.0 / len(models)
        current_progress = 0
        
        # First yield empty table and progress bar
        yield format_progress(current_progress, "Loading models..."), format_results(results)
        
        # Process FastText models first (they're fastest)
        for model_name, model in models.items():
            if isinstance(model, fasttext.FastText._FastText):
                yield format_progress(current_progress, f"Processing {model_name}..."), format_results(results)
                start_time = time.time()
                prediction = model.predict(text)
                label = prediction[0][0].replace('__label__', '')
                confidence = float(prediction[1][0])
                inference_time = time.time() - start_time
                
                results.append({
                    'model': model_name,
                    'prediction': label,
                    'confidence': confidence,
                    'time': inference_time
                })
                current_progress += progress_step
                yield format_progress(current_progress, f"Completed {model_name}"), format_results(results)
        
        # Process E5-based models
        e5_embedding = None
        for model_name, model in models.items():
            if model_name in ['E5 Classifier', 'E5-Instruct Classifier']:
                if e5_embedding is None:  # Generate embedding only once
                    yield format_progress(current_progress, f"Generating E5 embeddings..."), format_results(results)
                    e5_embedding, embed_time = generate_e5_embedding(text)
                
                start_time = time.time()
                embedding_2d = e5_embedding.reshape(1, -1)
                prediction = model.predict(embedding_2d)[0]
                probabilities = model.predict_proba(embedding_2d)[0]
                confidence = max(probabilities)
                inference_time = time.time() - start_time
                
                results.append({
                    'model': model_name,
                    'prediction': prediction,
                    'confidence': confidence,
                    'time': inference_time + embed_time
                })
                current_progress += progress_step
                yield format_progress(current_progress, f"Completed {model_name}"), format_results(results)
        
        # Process Azure-based models
        azure_embedding = None
        for model_name, model in models.items():
            if model_name in ['Azure Classifier', 'Azure KNN Classifier']:
                if azure_embedding is None:  # Generate embedding only once
                    yield format_progress(current_progress, "Generating Azure embeddings..."), format_results(results)
                    azure_embedding, embed_time = get_azure_embedding(text)
                
                start_time = time.time()
                embedding_2d = azure_embedding.reshape(1, -1)
                prediction = model.predict(embedding_2d)[0]
                probabilities = model.predict_proba(embedding_2d)[0]
                confidence = max(probabilities)
                inference_time = time.time() - start_time
                
                results.append({
                    'model': model_name,
                    'prediction': prediction,
                    'confidence': confidence,
                    'time': inference_time + embed_time
                })
                current_progress += progress_step
                yield format_progress(current_progress, f"Completed {model_name}"), format_results(results)
        
        # Process GTE model
        if 'GTE Classifier' in models:
            yield format_progress(current_progress, "Processing GTE Classifier..."), format_results(results)
            gte_embedding, embed_time = generate_gte_embedding(text)
            model = models['GTE Classifier']
            embedding_2d = gte_embedding.reshape(1, -1)
            prediction = model.predict(embedding_2d)[0]
            probabilities = model.predict_proba(embedding_2d)[0]
            confidence = max(probabilities)
            inference_time = time.time() - start_time
            
            results.append({
                'model': 'GTE Classifier',
                'prediction': prediction,
                'confidence': confidence,
                'time': inference_time + embed_time
            })
            current_progress = 100
            yield format_progress(current_progress, "Completed!"), format_results(results)
        
    except Exception as e:
        yield "", f"<div style='color: red; padding: 20px;'>Error occurred: {str(e)}</div>"

# Create Gradio interface with custom CSS
css = """
.main {
    gap: 0 !important;
}
.contain {
    gap: 0 !important;
}
.feedback {
    margin-top: 0 !important;
    margin-bottom: 0 !important;
}
"""

iface = gr.Interface(
    fn=predict_text_streaming,
    inputs=gr.Textbox(label="Enter text to classify", lines=3),
    outputs=[
        gr.HTML(label="Progress"),
        gr.HTML(label="Model Predictions")
    ],
    title="Text Classification Model Comparison",
    description="Compare predictions from different text classification models (Results stream as they become available)",
    theme=gr.themes.Soft(),
    css=css
)

if __name__ == "__main__":
    iface.launch(debug=True)