SeeknnDestroy
update models
51efdcf unverified
import gradio as gr
import pickle
import fasttext
import numpy as np
import os
import torch
import time
from transformers import AutoTokenizer, AutoModel
import torch.nn.functional as F
from openai import AzureOpenAI
from dotenv import load_dotenv
from config import get_fasttext_path, is_model_enabled
load_dotenv()
# Azure OpenAI Configuration
AZURE_API_VERSION = "2024-02-01"
# Model directory
MODEL_DIR = "models"
# Initialize Azure OpenAI client
azure_client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=AZURE_API_VERSION,
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
)
def generate_e5_embedding(text, model_name='intfloat/multilingual-e5-large'):
"""Generate E5 embeddings for a single text."""
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Add prefix for E5 models
text = f"query: {text}"
# Tokenize and generate embedding
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Mean pooling
attention_mask = inputs['attention_mask']
embeddings = mean_pooling(outputs.last_hidden_state, attention_mask)
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
inference_time = time.time() - start_time
return embeddings[0].numpy(), inference_time
def generate_e5_instruct_embedding(text, model_name='intfloat/multilingual-e5-large-instruct'):
"""Generate E5-instruct embeddings for a single text."""
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Add prefix for E5 models
text = f"query: {text}"
# Tokenize and generate embedding
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Mean pooling
attention_mask = inputs['attention_mask']
embeddings = mean_pooling(outputs.last_hidden_state, attention_mask)
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
inference_time = time.time() - start_time
return embeddings[0].numpy(), inference_time
def mean_pooling(token_embeddings, attention_mask):
"""Mean pooling function for E5 models."""
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def get_azure_embedding(text):
"""Get embeddings from Azure OpenAI API."""
start_time = time.time()
response = azure_client.embeddings.create(
model="text-embedding-3-large",
input=text
)
inference_time = time.time() - start_time
return np.array(response.data[0].embedding), inference_time
# Load models
def load_models():
models = {}
# Load pickle models only if enabled
pickle_models = {
'E5 Classifier': 'e5_classifier.pkl',
'E5-Instruct Classifier': 'e5_large_instruct_classifier.pkl',
'Azure Classifier': 'azure_classifier.pkl',
'Azure KNN Classifier': 'azure_knn_classifier.pkl',
'GTE Classifier': 'gte_classifier.pkl'
}
for model_name, filename in pickle_models.items():
if is_model_enabled(model_name):
with open(os.path.join(MODEL_DIR, filename), 'rb') as f:
models[model_name] = pickle.load(f)
# Load FastText models
if is_model_enabled('FastText Default'):
models['FastText Default'] = fasttext.load_model(get_fasttext_path('fasttext_default'))
if is_model_enabled('FastText Preprocessed'):
models['FastText Preprocessed'] = fasttext.load_model(get_fasttext_path('fasttext_preprocessed'))
if is_model_enabled('Fasttext WordnNGram 1'):
models['Fasttext WordnNGram 1'] = fasttext.load_model(get_fasttext_path('word_n_gram_1'))
if is_model_enabled('Fasttext WordnNGram 2'):
models['Fasttext WordnNGram 2'] = fasttext.load_model(get_fasttext_path('word_n_gram_2'))
if is_model_enabled('Fasttext WordnNGram 3'):
models['Fasttext WordnNGram 3'] = fasttext.load_model(get_fasttext_path('word_n_gram_3'))
if is_model_enabled('Fasttext Low Overfit'):
models['Fasttext Low Overfit'] = fasttext.load_model(get_fasttext_path('low_overfit'))
return models
def format_results(results):
"""Format results into HTML for better visualization."""
html = "<div style='font-family: monospace; padding: 10px 20px;'>"
html += "<table style='width: 100%; border-collapse: collapse; background-color: #1a1a1a; color: #ffffff; margin-bottom: 0;'>"
html += "<tr style='background-color: #2c3e50;'>"
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Model</th>"
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Prediction</th>"
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Confidence</th>"
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Time (sec)</th>"
html += "</tr>"
for result in results:
confidence_color = get_confidence_color(result['confidence'])
html += f"<tr style='background-color: #2d2d2d; border-bottom: 1px solid #404040;'>"
html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['model']}</td>"
html += f"<td style='padding: 12px; border: 1px solid #404040;'><span style='color: #4CAF50; font-weight: bold;'>{result['prediction']}</span></td>"
html += f"<td style='padding: 12px; border: 1px solid #404040;'><span style='color: {confidence_color}; font-weight: bold;'>{result['confidence']:.4f}</span></td>"
html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['time']:.4f}</td>"
html += "</tr>"
html += "</table></div>"
return html
def format_progress(progress_value, desc):
"""Format progress bar HTML."""
if progress_value >= 100:
return "" # Return empty string when complete
html = f"""
<div style='width: 100%; background-color: #1a1a1a; padding: 10px; border-radius: 5px; margin-bottom: 10px;'>
<div style='color: white; margin-bottom: 5px;'>{desc}</div>
<div style='background-color: #2d2d2d; border-radius: 3px;'>
<div style='background-color: #6b46c1; width: {progress_value}%; height: 20px; border-radius: 3px; transition: width 0.3s ease;'></div>
</div>
<div style='color: white; text-align: right; margin-top: 5px;'>{progress_value:.1f}%</div>
</div>
"""
return html
def get_confidence_color(confidence):
"""Return color based on confidence score."""
if confidence >= 0.8:
return "#00ff00" # Bright green for high confidence
elif confidence >= 0.5:
return "#ffa500" # Bright orange for medium confidence
else:
return "#ff4444" # Bright red for low confidence
# [Add GTE embedding generation function]
def generate_gte_embedding(text, model_name='Alibaba-NLP/gte-multilingual-base'):
"""Generate GTE embeddings for a single text."""
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
# Tokenize and generate embedding
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
embeddings = outputs.last_hidden_state[:, 0, :] # [CLS] token
embeddings = F.normalize(embeddings, p=2, dim=1) # normalize
inference_time = time.time() - start_time
return embeddings[0].numpy(), inference_time
# Make predictions (streaming version)
def predict_text_streaming(text):
try:
models = load_models()
results = []
if not models:
return "", "<div style='color: red; padding: 20px;'>No models are enabled in the configuration.</div>"
# Calculate progress step based on number of enabled models
progress_step = 100.0 / len(models)
current_progress = 0
# First yield empty table and progress bar
yield format_progress(current_progress, "Loading models..."), format_results(results)
# Process FastText models first (they're fastest)
for model_name, model in models.items():
if isinstance(model, fasttext.FastText._FastText):
yield format_progress(current_progress, f"Processing {model_name}..."), format_results(results)
start_time = time.time()
prediction = model.predict(text)
label = prediction[0][0].replace('__label__', '')
confidence = float(prediction[1][0])
inference_time = time.time() - start_time
results.append({
'model': model_name,
'prediction': label,
'confidence': confidence,
'time': inference_time
})
current_progress += progress_step
yield format_progress(current_progress, f"Completed {model_name}"), format_results(results)
# Process E5-based models
e5_embedding = None
for model_name, model in models.items():
if model_name in ['E5 Classifier', 'E5-Instruct Classifier']:
if e5_embedding is None: # Generate embedding only once
yield format_progress(current_progress, f"Generating E5 embeddings..."), format_results(results)
e5_embedding, embed_time = generate_e5_embedding(text)
start_time = time.time()
embedding_2d = e5_embedding.reshape(1, -1)
prediction = model.predict(embedding_2d)[0]
probabilities = model.predict_proba(embedding_2d)[0]
confidence = max(probabilities)
inference_time = time.time() - start_time
results.append({
'model': model_name,
'prediction': prediction,
'confidence': confidence,
'time': inference_time + embed_time
})
current_progress += progress_step
yield format_progress(current_progress, f"Completed {model_name}"), format_results(results)
# Process Azure-based models
azure_embedding = None
for model_name, model in models.items():
if model_name in ['Azure Classifier', 'Azure KNN Classifier']:
if azure_embedding is None: # Generate embedding only once
yield format_progress(current_progress, "Generating Azure embeddings..."), format_results(results)
azure_embedding, embed_time = get_azure_embedding(text)
start_time = time.time()
embedding_2d = azure_embedding.reshape(1, -1)
prediction = model.predict(embedding_2d)[0]
probabilities = model.predict_proba(embedding_2d)[0]
confidence = max(probabilities)
inference_time = time.time() - start_time
results.append({
'model': model_name,
'prediction': prediction,
'confidence': confidence,
'time': inference_time + embed_time
})
current_progress += progress_step
yield format_progress(current_progress, f"Completed {model_name}"), format_results(results)
# Process GTE model
if 'GTE Classifier' in models:
yield format_progress(current_progress, "Processing GTE Classifier..."), format_results(results)
gte_embedding, embed_time = generate_gte_embedding(text)
model = models['GTE Classifier']
embedding_2d = gte_embedding.reshape(1, -1)
prediction = model.predict(embedding_2d)[0]
probabilities = model.predict_proba(embedding_2d)[0]
confidence = max(probabilities)
inference_time = time.time() - start_time
results.append({
'model': 'GTE Classifier',
'prediction': prediction,
'confidence': confidence,
'time': inference_time + embed_time
})
current_progress = 100
yield format_progress(current_progress, "Completed!"), format_results(results)
except Exception as e:
yield "", f"<div style='color: red; padding: 20px;'>Error occurred: {str(e)}</div>"
# Create Gradio interface with custom CSS
css = """
.main {
gap: 0 !important;
}
.contain {
gap: 0 !important;
}
.feedback {
margin-top: 0 !important;
margin-bottom: 0 !important;
}
"""
iface = gr.Interface(
fn=predict_text_streaming,
inputs=gr.Textbox(label="Enter text to classify", lines=3),
outputs=[
gr.HTML(label="Progress"),
gr.HTML(label="Model Predictions")
],
title="Text Classification Model Comparison",
description="Compare predictions from different text classification models (Results stream as they become available)",
theme=gr.themes.Soft(),
css=css
)
if __name__ == "__main__":
iface.launch(debug=True)