|
import streamlit as st |
|
import numpy as np |
|
import plotly.express as px |
|
import cv2 |
|
from src.error_analysis import ErrorAnalysis, transform_gt_bbox_format |
|
import yaml |
|
import os |
|
from src.confusion_matrix import ConfusionMatrix |
|
from plotly.subplots import make_subplots |
|
import plotly.graph_objects as go |
|
import pandas as pd |
|
|
|
|
|
def amend_cm_df(cm_df, labels_dict): |
|
"""Helper function to amend the index and column name for readability |
|
Example - index currently is 0, 1 ... -> GT - person |
|
Likewise in Column - 0, 1 ... -> Pred - person etc |
|
|
|
Args: |
|
cm_df (_type_): confusion matrix dataframe. |
|
labels_dict (_type_): dictionary of the class labels |
|
|
|
Returns: |
|
cm_df: confusion matrix dataframe with index and column names filled |
|
""" |
|
|
|
index_list = list(labels_dict.values()) |
|
index_list.append("background") |
|
|
|
cm_df = cm_df.set_axis([f"GT - {elem}" for elem in index_list]) |
|
cm_df = cm_df.set_axis([f"Pred - {elem}" for elem in index_list], axis=1) |
|
cm_df = cm_df.astype(int) |
|
|
|
return cm_df |
|
|
|
def find_top_left_pos(mask): |
|
"""gets the top left position of the mask |
|
|
|
Args: |
|
mask (_type_): _description_ |
|
|
|
Returns: |
|
_type_: _description_ |
|
""" |
|
|
|
return np.unravel_index(np.argmax(mask, axis=None), mask.shape) |
|
|
|
|
|
class ImageTool: |
|
|
|
def __init__(self, cfg_path="cfg/cfg.yml"): |
|
|
|
|
|
cfg_file = open(cfg_path) |
|
self.cfg_obj = yaml.load(cfg_file, Loader=yaml.FullLoader) |
|
|
|
|
|
self.ea_obj = ErrorAnalysis(cfg_path) |
|
self.inference_folder = self.ea_obj.inference_folder |
|
self.ea_obj.get_annots() |
|
self.gt_annots = self.ea_obj.gt_dict |
|
self.all_img = os.listdir(self.inference_folder) |
|
self.ea_obj.model.score_threshold = self.cfg_obj["visual_tool"]["conf_threshold"] |
|
self.ea_obj.model.iou_threshold = self.cfg_obj["visual_tool"]["iou_threshold"] |
|
|
|
|
|
self.labels_dict = self.cfg_obj["error_analysis"]["labels_dict"] |
|
self.labels_dict = {v: k for k, v in self.labels_dict.items()} |
|
self.inference_labels_dict = self.cfg_obj["error_analysis"]["inference_labels_dict"] |
|
self.inference_labels_dict = {v: k for k, v in self.inference_labels_dict.items()} |
|
self.idx_base = self.cfg_obj["error_analysis"]["idx_base"] |
|
|
|
|
|
self.bbox_thickness = self.cfg_obj["visual_tool"]["bbox_thickness"] |
|
self.font_scale = self.cfg_obj["visual_tool"]["font_scale"] |
|
self.font_thickness = self.cfg_obj["visual_tool"]["font_thickness"] |
|
self.pred_colour = tuple(self.cfg_obj["visual_tool"]["pred_colour"]) |
|
self.gt_colour = tuple(self.cfg_obj["visual_tool"]["gt_colour"]) |
|
|
|
def show_img(self, img_fname="000000011149.jpg", show_preds=False, show_gt=False): |
|
"""generate img with option to overlay with GT and/or preds |
|
|
|
Args: |
|
img_fname (str, optional): Filename of the image. Defaults to "000000011149.jpg". |
|
show_preds (bool, optional): Toggle True to run model to get the preds. Defaults to False. |
|
show_gt (bool, optional): Toggle True to get the GT labels/boxes. Defaults to False. |
|
|
|
Returns: |
|
fig (Plotly Figure): image with overlays if toggled True |
|
cm_df (pd.DataFrame): confusion matrix of the pred versus GT |
|
cm_tpfpfn_dict (Dict): confusion matrix dictionary of tp/fp/fn |
|
""" |
|
|
|
|
|
img = cv2.imread(f"{self.inference_folder}{img_fname}") |
|
|
|
labels = {"x": "X", "y": "Y", "color": "Colour"} |
|
|
|
if show_preds: |
|
|
|
preds = self.get_preds(img_fname) |
|
if self.ea_obj.task == "det": |
|
img = self.draw_pred_bboxes(img, preds) |
|
elif self.ea_obj.task == "seg": |
|
img = self.draw_pred_masks(img, preds) |
|
|
|
if show_gt: |
|
|
|
gt_annots = self.get_gt_annot(img_fname) |
|
|
|
if self.ea_obj.task == "det": |
|
img = self.draw_gt_bboxes(img, preds) |
|
elif self.ea_obj.task == "seg": |
|
img = self.draw_gt_masks(img, gt_annots) |
|
|
|
fig = px.imshow(img[..., ::-1], aspect="equal", labels=labels) |
|
|
|
if show_gt and show_preds: |
|
|
|
cm_df, cm_tpfpfn_dict = self.generate_cm_one_image(preds, gt_annots) |
|
return [fig, cm_df, cm_tpfpfn_dict] |
|
|
|
return fig |
|
|
|
def show_img_sbs(self, img_fname="000000011149.jpg"): |
|
"""generate two imageso with confusion matrix and tp/fp/fn. fig1 is image with GT overlay, while fig2 is the image witih pred overlay. |
|
|
|
Args: |
|
img_fname (str, optional): Filename of the image. Defaults to "000000011149.jpg". |
|
|
|
Returns: |
|
list: fig1 - imshow of image with GT overlay |
|
fig2 - imshow of image with pred overlay |
|
cm_df - confusion matrix dataframe |
|
cm_tpfpfn_df - confusion matrix dictionary of tp/fp/fn |
|
""" |
|
|
|
|
|
img = cv2.imread(f"{self.inference_folder}{img_fname}") |
|
labels = {"x": "X", "y": "Y", "color": "Colour"} |
|
|
|
img_pred = img.copy() |
|
img_gt = img.copy() |
|
|
|
preds = self.get_preds(img_fname) |
|
|
|
gt_annots = self.get_gt_annot(img_fname) |
|
|
|
if self.ea_obj.task == 'det': |
|
img_pred = self.draw_pred_bboxes(img_pred, preds) |
|
img_gt = self.draw_gt_bboxes(img_gt, gt_annots) |
|
|
|
elif self.ea_obj.task == 'seg': |
|
img_pred = self.draw_pred_masks(img_pred, preds) |
|
img_gt = self.draw_gt_masks(img_gt, gt_annots) |
|
|
|
|
|
fig1 = px.imshow(img_gt[..., ::-1], aspect="equal", labels=labels) |
|
fig2 = px.imshow(img_pred[..., ::-1], aspect="equal", labels=labels) |
|
fig2.update_yaxes(visible=False) |
|
|
|
cm_df, cm_tpfpfn_df = self.generate_cm_one_image(preds, gt_annots) |
|
|
|
return [fig1, fig2, cm_df, cm_tpfpfn_df] |
|
|
|
def generate_cm_one_image(self, preds, gt_annots): |
|
"""Generates confusion matrix between the inference and the Ground Truth of an image |
|
|
|
Args: |
|
preds (array): inference output of the model on the image |
|
gt_annots (array): Ground Truth labels of the image |
|
|
|
Returns: |
|
cm_df (DataFrame): Confusion matrix dataframe. |
|
cm_tpfpfn_df (DataFrame): TP/FP/FN dataframe |
|
""" |
|
|
|
num_classes = len(list(self.cfg_obj["error_analysis"]["labels_dict"].keys())) |
|
idx_base = self.cfg_obj["error_analysis"]["idx_base"] |
|
|
|
conf_threshold, iou_threshold = ( |
|
self.ea_obj.model.score_threshold, |
|
self.ea_obj.model.iou_threshold, |
|
) |
|
cm = ConfusionMatrix( |
|
num_classes=num_classes, |
|
CONF_THRESHOLD=conf_threshold, |
|
IOU_THRESHOLD=iou_threshold, |
|
) |
|
if self.ea_obj.task == 'det': |
|
gt_annots[:, 0] -= idx_base |
|
preds[:, -1] -= idx_base |
|
elif self.ea_obj.task == 'seg': |
|
gt_annots = [[gt[0] - idx_base, gt[1]] for gt in gt_annots] |
|
|
|
cm.process_batch(preds, gt_annots, task = self.ea_obj.task) |
|
|
|
confusion_matrix_df = cm.return_as_df() |
|
cm.get_tpfpfn() |
|
|
|
cm_tpfpfn_dict = { |
|
"True Positive": cm.tp, |
|
"False Positive": cm.fp, |
|
"False Negative": cm.fn, |
|
} |
|
|
|
cm_tpfpfn_df = pd.DataFrame(cm_tpfpfn_dict, index=[0]) |
|
cm_tpfpfn_df = cm_tpfpfn_df.set_axis(["Values"], axis=0) |
|
cm_tpfpfn_df = cm_tpfpfn_df.astype(int) |
|
|
|
|
|
confusion_matrix_df = amend_cm_df(confusion_matrix_df, self.labels_dict) |
|
|
|
|
|
return confusion_matrix_df, cm_tpfpfn_df |
|
|
|
def get_preds(self, img_fname="000000011149.jpg"): |
|
"""Using the model in the Error Analysis object, run inference to get outputs |
|
|
|
Args: |
|
img_fname (str): Image filename. Defaults to "000000011149.jpg". |
|
|
|
Returns: |
|
outputs (array): Inference output of the model on the image |
|
""" |
|
|
|
|
|
outputs, img_shape = self.ea_obj.generate_inference(img_fname) |
|
|
|
if self.ea_obj.task == 'det': |
|
|
|
|
|
|
|
outputs[:, 0] *= img_shape[1] |
|
outputs[:, 1] *= img_shape[0] |
|
outputs[:, 2] *= img_shape[1] |
|
outputs[:, 3] *= img_shape[0] |
|
|
|
return outputs |
|
|
|
def get_gt_annot(self, img_fname): |
|
"""Retrieve the Ground Truth annotations of the image. |
|
|
|
Args: |
|
img_fname (_type_): Image filename |
|
|
|
Returns: |
|
grount_truth (array): GT labels of the image |
|
""" |
|
ground_truth = self.gt_annots[img_fname].copy() |
|
img = cv2.imread(f"{self.inference_folder}{img_fname}") |
|
|
|
|
|
|
|
|
|
if self.ea_obj.task == 'det': |
|
img_shape = img.shape |
|
ground_truth = transform_gt_bbox_format(ground_truth, img_shape, format="coco") |
|
ground_truth[:, 1] *= img_shape[1] |
|
ground_truth[:, 2] *= img_shape[0] |
|
ground_truth[:, 3] *= img_shape[1] |
|
ground_truth[:, 4] *= img_shape[0] |
|
|
|
return ground_truth |
|
|
|
def draw_pred_masks(self, img_pred, inference_outputs): |
|
"""Overlay mask onto img_pred |
|
|
|
Args: |
|
img_pred (_type_): _description_ |
|
preds (_type_): _description_ |
|
""" |
|
|
|
pred_mask = sum([output[0] for output in inference_outputs]) |
|
pred_mask = np.where(pred_mask > 1, 1, pred_mask) |
|
|
|
|
|
colour = np.array(self.pred_colour, dtype='uint8') |
|
masked_img = np.where(pred_mask[...,None], colour, img_pred) |
|
masked_img = masked_img.astype(np.uint8) |
|
|
|
img_pred = cv2.addWeighted(img_pred, 0.7, masked_img, 0.3, 0) |
|
|
|
def put_text_ina_mask(output, img): |
|
|
|
coords = find_top_left_pos(output[0]) |
|
|
|
img = cv2.putText(img, self.inference_labels_dict[output[2]], (coords[1], coords[0] + 5), fontFace = cv2.FONT_HERSHEY_SIMPLEX, fontScale = self.font_scale, |
|
color = self.pred_colour, thickness = self.font_thickness) |
|
|
|
return img |
|
|
|
for output in inference_outputs: |
|
img_pred = put_text_ina_mask(output, img_pred) |
|
|
|
return img_pred |
|
|
|
def draw_gt_masks(self, img_gt, gt_outputs): |
|
"""Overlay mask onto img_pred |
|
|
|
Args: |
|
img_pred (_type_): _description_ |
|
preds (_type_): _description_ |
|
""" |
|
|
|
gt_mask = sum([output[1] for output in gt_outputs]) |
|
gt_mask = np.where(gt_mask > 1, 1, gt_mask) |
|
|
|
|
|
colour = np.array(self.gt_colour, dtype='uint8') |
|
masked_img = np.where(gt_mask[...,None], colour, img_gt) |
|
|
|
def put_text_ina_mask(output, img): |
|
|
|
coords = find_top_left_pos(output[1]) |
|
|
|
img = cv2.putText(img, self.labels_dict[output[0]], (coords[1], coords[0] + 5), fontFace = cv2.FONT_HERSHEY_SIMPLEX, fontScale = self.font_scale, |
|
color = self.gt_colour, thickness = self.font_thickness) |
|
|
|
return img |
|
|
|
img_gt = cv2.addWeighted(img_gt, 0.7, masked_img, 0.3,0) |
|
|
|
for output in gt_outputs: |
|
img_gt = put_text_ina_mask(output, img_gt) |
|
|
|
return img_gt |
|
|
|
def draw_pred_bboxes(self, img_pred, preds): |
|
"""Draws the preds onto the image |
|
|
|
Args: |
|
img_pred (array): image |
|
preds (array): model inference outputs |
|
|
|
Returns: |
|
img_pred (array): image with outputs on overlay |
|
""" |
|
for pred in preds: |
|
pred = pred.astype(int) |
|
img_pred = cv2.rectangle( |
|
img_pred, |
|
(pred[0], pred[1]), |
|
(pred[2], pred[3]), |
|
color=self.pred_colour, |
|
thickness=self.bbox_thickness, |
|
) |
|
img_pred = cv2.putText( |
|
img_pred, |
|
self.labels_dict[pred[5]], |
|
(pred[0] + 5, pred[1] + 25), |
|
color=self.pred_colour, |
|
fontFace=cv2.FONT_HERSHEY_SIMPLEX, |
|
fontScale=self.font_scale, |
|
thickness=self.font_thickness, |
|
) |
|
return img_pred |
|
|
|
def draw_gt_bboxes(self, img_gt, gt_annots, **kwargs): |
|
"""Draws the GT onto the image |
|
|
|
Args: |
|
img_gt (array): image |
|
gt_annots (array): GT labels |
|
|
|
Returns: |
|
img_gt (array): image with GT overlay |
|
""" |
|
for annot in gt_annots: |
|
annot = annot.astype(int) |
|
|
|
img_gt = cv2.rectangle( |
|
img_gt, |
|
(annot[1], annot[2]), |
|
(annot[3], annot[4]), |
|
color=self.gt_colour, |
|
thickness=self.bbox_thickness, |
|
) |
|
img_gt = cv2.putText( |
|
img_gt, |
|
self.labels_dict[annot[0]], |
|
(annot[1] + 5, annot[2] + 25), |
|
color=(0, 255, 0), |
|
fontFace=cv2.FONT_HERSHEY_SIMPLEX, |
|
fontScale=self.font_scale, |
|
thickness=self.font_thickness, |
|
) |
|
return img_gt |
|
|
|
def plot_with_preds_gt(self, option, side_by_side=False, plot_type=None): |
|
"""Rules on what plot to generate |
|
|
|
Args: |
|
option (_string_): image filename. Toggled on the app itself. See app.py |
|
side_by_side (bool, optional): Whether to have two plots side by side. |
|
Defaults to False. |
|
plot_type (_type_, optional): "all" - both GT and pred will be plotted, |
|
"pred" - only preds, |
|
"GT" - only ground truth |
|
None - only image generated |
|
Will be overridden if side_by_side = True |
|
Defaults to None. |
|
""" |
|
|
|
if plot_type == "all": |
|
plot, df, cm_tpfpfn_df = self.show_img( |
|
option, show_preds=True, show_gt=True |
|
) |
|
st.plotly_chart(plot, use_container_width=True) |
|
st.caption("Blue: Model BBox, Green: GT BBox") |
|
|
|
st.table(df) |
|
st.table(cm_tpfpfn_df) |
|
|
|
elif plot_type == "pred": |
|
st.plotly_chart( |
|
self.show_img(option, show_preds=True), use_container_width=True |
|
) |
|
|
|
elif plot_type == "gt": |
|
st.plotly_chart( |
|
self.show_img(option, show_gt=True), use_container_width=True |
|
) |
|
|
|
elif side_by_side: |
|
|
|
plot1, plot2, df, cm_tpfpfn_df = self.show_img_sbs(option) |
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
col1.subheader("Ground Truth") |
|
st.plotly_chart(plot1, use_container_width=True) |
|
with col2: |
|
col2.subheader("Prediction") |
|
st.plotly_chart(plot2, use_container_width=True) |
|
|
|
st.table(df) |
|
st.table(cm_tpfpfn_df) |
|
|
|
else: |
|
st.plotly_chart(self.show_img(option), use_container_width=True) |
|
|