Spaces:
Sleeping
Sleeping
File size: 5,502 Bytes
1cc6224 a6ecfee 1cc6224 2860ff3 a6ecfee ff9d83f 1cc6224 8caed8a 1cc6224 b7965e5 1cc6224 ff9d83f 8caed8a ff9d83f 2860ff3 1cc6224 a6ecfee 1cc6224 2860ff3 1cc6224 ff9d83f 1cc6224 624d8a5 a6ecfee 8caed8a 1cc6224 c82b871 2756f43 1cc6224 a6ecfee 43bb065 6e3f24c 1cc6224 e8a951a a6ecfee 1cc6224 43bb065 f9d4f75 1cc6224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing to-do list examples
retrieval_model_name = 'all-MiniLM-L6-v2' # Using a pre-trained model from Hugging Face
openai.api_key = os.environ["OPENAI_API_KEY"]
# Update the system message to provide more guidance on generating a concise to-do list
system_message = (
"You are an assistant specialized in creating concise to-do lists based on user input. "
"Parse the input for tasks and generate a list of the most important actionable items. "
"Output the items in a numbered list, with a maximum of 3 items."
)
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query):
"""
Generate a response emphasizing the bot's capability in providing scheduling information.
"""
try:
# Append user's message to messages list
messages.append({"role": "user", "content": user_query})
# Call OpenAI API to generate a concise to-do list based on the user query
response = openai.ChatCompletion.create(
model="gpt-4",
messages=messages,
max_tokens=150, # Adjusted max tokens to reduce output length
temperature=0.3,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Hello! I am your time manager Timify! Please enter what you need to do today."
# Generate a response using the user query directly
response = generate_response(question)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
★Welcome to Timify!★
## I am your AI chatbot driven to help you with all your scheduling needs!
"""
topics = """
### Feel free to ask about the questions below:
- How does Timify work?
- Create me a to-do list
- Ask me to create a daily schedule
- Ask me to create a weekly schedule
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='freddyaboulton/test-blue') as demo:
gr.Image("Timify background.png", show_label=False, show_share_button=False, show_download_button=False)
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What do you want to ask Timify about?")
answer = gr.Textbox(label="Timify Response", placeholder="Timify ChatBot will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|