File size: 8,043 Bytes
04e7b78 9604b3c d2e2fb3 9604b3c 2adecad 9604b3c d2e2fb3 6d5fe23 362e959 6d5fe23 b92107e 6d5fe23 d2e2fb3 2adecad d2e2fb3 2adecad d2e2fb3 2adecad fb5842d 6d5fe23 b9bb819 6d5fe23 b9bb819 6d5fe23 d2e2fb3 6d5fe23 b9bb819 6d5fe23 b9bb819 6d5fe23 d2e2fb3 fb5842d 2adecad 6d5fe23 362e959 d3061d0 d2e2fb3 6d5fe23 3922cca 6d5fe23 2adecad d2e2fb3 2adecad d3061d0 2adecad 6d5fe23 d2e2fb3 2adecad fb5842d 6d5fe23 d2e2fb3 2adecad d2e2fb3 2adecad 068f0da baad6f6 af7b7a1 6d5fe23 fb5842d b92a5dd fb5842d b92a5dd fb5842d af7b7a1 6d5fe23 fb5842d b92a5dd d2e2fb3 b38e092 fb5842d d2e2fb3 fb5842d 2adecad b38e092 fb5842d 6d5fe23 fb5842d b38e092 d2e2fb3 b38e092 d3061d0 2adecad d3061d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
from transformers import pipeline
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
# Initialize the classifiers
zero_shot_classifier = pipeline("zero-shot-classification", model="tasksource/ModernBERT-base-nli")
nli_classifier = pipeline("text-classification", model="tasksource/ModernBERT-base-nli")
# Define examples (including new long context example)
zero_shot_examples = [
["I absolutely love this product, it's amazing!", "positive, negative, neutral"],
["I need to buy groceries", "shopping, urgent tasks, leisure, philosophy"],
["The sun is very bright today", "weather, astronomy, complaints, poetry"],
["I love playing video games", "entertainment, sports, education, business"],
["The car won't start", "transportation, art, cooking, literature"]
]
nli_examples = [
["A man is sleeping on a couch", "The man is awake"],
["The restaurant's waiting area is bustling, but several tables remain vacant", "The establishment is at maximum capacity"],
["The child is methodically arranging blocks while frowning in concentration", "The kid is experiencing joy"],
["Dark clouds are gathering and the pavement shows scattered wet spots", "It's been raining heavily all day"],
["A German Shepherd is exhibiting defensive behavior towards someone approaching the property", "The animal making noise is feline"]
]
long_context_examples = [
["""The small cafe on the corner has been bustling with activity all morning. The aroma of freshly baked pastries wafts through the air, drawing in passersby. The baristas work efficiently behind the counter, crafting intricate latte art. Several customers are seated at wooden tables, engaged in quiet conversations or working on laptops. Through the large windows, sunshine streams in, creating a warm and inviting atmosphere.""",
"The cafe is experiencing a slow, quiet morning"]
]
def process_input(text_input, labels_or_premise, mode):
if mode == "Zero-Shot Classification":
labels = [label.strip() for label in labels_or_premise.split(',')]
prediction = zero_shot_classifier(text_input, labels)
results = {label: score for label, score in zip(prediction['labels'], prediction['scores'])}
return results, ''
elif mode == "Natural Language Inference":
pred = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}], return_all_scores=True)[0]
results = {pred['label']: pred['score'] for pred in pred}
return results, ''
else: # Long Context NLI
# Global prediction
global_pred = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}], return_all_scores=True)[0]
global_results = {pred['label']: pred['score'] for pred in global_pred}
# Sentence-level analysis
sentences = sent_tokenize(text_input)
sentence_results = []
for sentence in sentences:
sent_pred = nli_classifier([{"text": sentence, "text_pair": labels_or_premise}], return_all_scores=True)[0]
sent_scores = {pred['label']: pred['score'] for pred in sent_pred}
max_label = max(sent_scores.items(), key=lambda x: x[1])[0]
sentence_results.append({
'sentence': sentence,
'prediction': max_label,
'scores': sent_scores
})
# Create markdown analysis
analysis_md = "## Global Prediction\n"
max_global_label = max(global_results.items(), key=lambda x: x[1])[0]
analysis_md += f"Overall prediction: **{max_global_label}**\n\n"
analysis_md += "## Sentence-Level Analysis\n"
for i, result in enumerate(sentence_results, 1):
analysis_md += f"\n### Sentence {i}\n"
analysis_md += f"*{result['sentence']}*\n"
analysis_md += f"Prediction: **{result['prediction']}**\n"
scores_str = ", ".join([f"{label}: {score:.2f}" for label, score in result['scores'].items()])
analysis_md += f"Scores: {scores_str}\n"
return global_results, analysis_md
def update_interface(mode):
if mode == "Zero-Shot Classification":
return (
gr.update(
label="π·οΈ Categories",
placeholder="Enter comma-separated categories...",
value=zero_shot_examples[0][1]
),
gr.update(value=zero_shot_examples[0][0])
)
elif mode == "Natural Language Inference":
return (
gr.update(
label="π Hypothesis",
placeholder="Enter a hypothesis to compare with the premise...",
value=nli_examples[0][1]
),
gr.update(value=nli_examples[0][0])
)
else: # Long Context NLI
return (
gr.update(
label="π Global Hypothesis",
placeholder="Enter a hypothesis to test against the full context...",
value=long_context_examples[0][1]
),
gr.update(value=long_context_examples[0][0])
)
with gr.Blocks() as demo:
gr.Markdown("""
# tasksource/ModernBERT-nli demonstration
This space uses [tasksource/ModernBERT-base-nli](https://huggingface.co/tasksource/ModernBERT-base-nli),
fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base)
on tasksource classification tasks.
This NLI model achieves high accuracy on logical reasoning and long-context NLI, outperforming Llama 3 8B on ConTRoL and FOLIO.
""")
mode = gr.Radio(
["Zero-Shot Classification", "Natural Language Inference", "Long Context NLI"],
label="Select Mode",
value="Zero-Shot Classification"
)
with gr.Column():
text_input = gr.Textbox(
label="βοΈ Input Text",
placeholder="Enter your text...",
lines=3,
value=zero_shot_examples[0][0]
)
labels_or_premise = gr.Textbox(
label="π·οΈ Categories",
placeholder="Enter comma-separated categories...",
lines=2,
value=zero_shot_examples[0][1]
)
submit_btn = gr.Button("Submit")
outputs = [
gr.Label(label="π Results"),
gr.Markdown(label="π Sentence Analysis", visible=True)
]
with gr.Column(variant="panel") as zero_shot_examples_panel:
gr.Examples(
examples=zero_shot_examples,
inputs=[text_input, labels_or_premise],
label="Zero-Shot Classification Examples",
)
with gr.Column(variant="panel") as nli_examples_panel:
gr.Examples(
examples=nli_examples,
inputs=[text_input, labels_or_premise],
label="Natural Language Inference Examples",
)
with gr.Column(variant="panel") as long_context_examples_panel:
gr.Examples(
examples=long_context_examples,
inputs=[text_input, labels_or_premise],
label="Long Context NLI Examples",
)
def update_visibility(mode):
return (
gr.update(visible=(mode == "Zero-Shot Classification")),
gr.update(visible=(mode == "Natural Language Inference")),
gr.update(visible=(mode == "Long Context NLI"))
)
mode.change(
fn=update_interface,
inputs=[mode],
outputs=[labels_or_premise, text_input]
)
mode.change(
fn=update_visibility,
inputs=[mode],
outputs=[zero_shot_examples_panel, nli_examples_panel, long_context_examples_panel]
)
submit_btn.click(
fn=process_input,
inputs=[text_input, labels_or_premise, mode],
outputs=outputs
)
if __name__ == "__main__":
demo.launch() |