File size: 32,918 Bytes
2d967e5
 
 
 
 
 
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94f8aa
2d967e5
 
 
 
 
 
a94f8aa
2d967e5
 
 
a94f8aa
2d967e5
 
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
 
 
a94f8aa
2d967e5
a94f8aa
2d967e5
a94f8aa
2d967e5
 
 
 
 
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94f8aa
2d967e5
 
 
 
a94f8aa
2d967e5
 
a94f8aa
2d967e5
a94f8aa
2d967e5
a94f8aa
 
2d967e5
 
 
 
 
 
 
 
 
 
 
a94f8aa
2d967e5
 
 
 
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94f8aa
2d967e5
 
 
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
 
 
 
a94f8aa
2d967e5
 
 
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94f8aa
 
c4965c8
 
 
a94f8aa
c4965c8
 
a94f8aa
2d967e5
 
a94f8aa
2d967e5
a94f8aa
 
 
2d967e5
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94f8aa
 
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94f8aa
2d967e5
 
 
a94f8aa
 
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94f8aa
 
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947634e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
import os
import io
import torch
import uvicorn
import spacy
import pdfplumber
import moviepy.editor as mp
import librosa
import soundfile as sf
import matplotlib.pyplot as plt
import numpy as np
import json
import tempfile
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
from sentence_transformers import SentenceTransformer
from pyngrok import ngrok
from threading import Thread
import time
import uuid

# ✅ Ensure compatibility with Google Colab
try:
    from google.colab import drive
    drive.mount('/content/drive')
except:
    pass  # Skip drive mount if not in Google Colab

# ✅ Ensure required directories exist
os.makedirs("static", exist_ok=True)
os.makedirs("temp", exist_ok=True)

# ✅ Ensure GPU usage
device = "cuda" if torch.cuda.is_available() else "cpu"

# ✅ Initialize FastAPI
app = FastAPI(title="Legal Document and Video Analyzer")

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# ✅ Initialize document storage
document_storage = {}
chat_history = []  # ✅ Added global chat history

# ✅ Function to store document context by task ID
def store_document_context(task_id, text):
    """Store document text for retrieval by chatbot."""
    document_storage[task_id] = text
    return True

# ✅ Function to load document context by task ID
def load_document_context(task_id):
    """Retrieve document text for chatbot context."""
    return document_storage.get(task_id, "")

#############################
#   Fine-tuning on CUAD QA   #
#############################

def fine_tune_cuad_model():
    """
    Fine tunes a question-answering model on the CUAD (Contract Understanding Atticus Dataset)
    for detailed clause extraction. This demo function uses one epoch for demonstration;
    adjust training parameters as needed.
    """
    from datasets import load_dataset
    import numpy as np
    # Optionally, load a metric (here we leave metrics out for brevity)
    from transformers import Trainer, TrainingArguments
    from transformers import AutoModelForQuestionAnswering

    print("✅ Loading CUAD dataset for fine tuning...")
    # Load the CUAD QA dataset (SQuAD-style) with custom code allowed
    dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)

    # Use the train split with a larger subset for production fine tuning
    if "train" in dataset:
        # Select a larger subset for training, e.g., 1000 examples
        train_dataset = dataset["train"].select(range(1000))
        
        # For validation, you might select around 200 examples
        if "validation" in dataset:
            val_dataset = dataset["validation"].select(range(200))
        else:
            split = train_dataset.train_test_split(test_size=0.2)
            train_dataset = split["train"]
            val_dataset = split["test"]
    else:
        raise ValueError("CUAD dataset does not have a train split")

    print("✅ Preparing training features...")

    # Load a QA model and its tokenizer. Here we use deepset/roberta-base-squad2.
    tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
    model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")

    def prepare_train_features(examples):
        # Tokenize with question and context; use truncation only on the context.
        tokenized_examples = tokenizer(
            examples["question"],
            examples["context"],
            truncation="only_second",
            max_length=384,
            stride=128,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length",
        )
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        offset_mapping = tokenized_examples.pop("offset_mapping")
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []
        for i, offsets in enumerate(offset_mapping):
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)
            sequence_ids = tokenized_examples.sequence_ids(i)
            sample_index = sample_mapping[i]
            answers = examples["answers"][sample_index]
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])
                tokenized_start_index = 0
                while sequence_ids[tokenized_start_index] != 1:
                    tokenized_start_index += 1
                tokenized_end_index = len(input_ids) - 1
                while sequence_ids[tokenized_end_index] != 1:
                    tokenized_end_index -= 1
                if not (offsets[tokenized_start_index][0] <= start_char and offsets[tokenized_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                else:
                    while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char:
                        tokenized_start_index += 1
                    tokenized_examples["start_positions"].append(tokenized_start_index - 1)
                    while offsets[tokenized_end_index][1] >= end_char:
                        tokenized_end_index -= 1
                    tokenized_examples["end_positions"].append(tokenized_end_index + 1)
        return tokenized_examples

    print("✅ Tokenizing dataset...")
    train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
    val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)

    # Set format for PyTorch QA training
    train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
    val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])

    # For QA tasks, computing metrics can be more complex; here we skip metrics for brevity.
    training_args = TrainingArguments(
        output_dir="./fine_tuned_legal_qa",
        evaluation_strategy="steps",
        eval_steps=100,
        learning_rate=2e-5,
        per_device_train_batch_size=16,
        per_device_eval_batch_size=16,
        num_train_epochs=1,
        weight_decay=0.01,
        logging_steps=50,
        save_steps=100,
        load_best_model_at_end=True,
        report_to=[]  # Disables wandb logging to avoid related issues
    )

    print("✅ Starting fine tuning on CUAD QA dataset...")
    from transformers import Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=val_dataset,
        tokenizer=tokenizer,
    )

    trainer.train()
    print("✅ Fine tuning completed. Saving model...")

    model.save_pretrained("./fine_tuned_legal_qa")
    tokenizer.save_pretrained("./fine_tuned_legal_qa")

    return tokenizer, model

#############################
#    Load NLP Models       #
#############################

try:
    try:
        nlp = spacy.load("en_core_web_sm")
    except:
        spacy.cli.download("en_core_web_sm")
        nlp = spacy.load("en_core_web_sm")
    print("✅ Loading NLP models...")

    # Updated summarizer initialization with a slow tokenizer
    from transformers import AutoTokenizer
    summarizer = pipeline(
        "summarization",
        model="nsi319/legal-pegasus",
        tokenizer=AutoTokenizer.from_pretrained("nsi319/legal-pegasus", use_fast=False),
        device=0 if torch.cuda.is_available() else -1
    )
    
    embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
    ner_model = pipeline("ner", model="dslim/bert-base-NER",
                     device=0 if torch.cuda.is_available() else -1)
    speech_to_text = pipeline("automatic-speech-recognition",
                             model="openai/whisper-medium",
                             chunk_length_s=30,
                             device_map="auto" if torch.cuda.is_available() else "cpu")

    # ✅ Load or Fine Tune CUAD QA Model
    if os.path.exists("fine_tuned_legal_qa"):
        print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
        cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
        from transformers import AutoModelForQuestionAnswering
        cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
        cuad_model.to(device)
    else:
        print("⚠️ Fine-tuned QA model not found. Starting fine tuning on CUAD QA dataset. This may take a while...")
        cuad_tokenizer, cuad_model = fine_tune_cuad_model()
        cuad_model.to(device)

    print("✅ All models loaded successfully")

except Exception as e:
    print(f"⚠️ Error loading models: {str(e)}")
    raise RuntimeError(f"Error loading models: {str(e)}")

from transformers import pipeline

qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")

def legal_chatbot(user_input, context):
    """Uses a real NLP model for legal Q&A."""
    global chat_history
    chat_history.append({"role": "user", "content": user_input})
    response = qa_model(question=user_input, context=context)["answer"]
    chat_history.append({"role": "assistant", "content": response})
    return response

def extract_text_from_pdf(pdf_file):
    """Extracts text from a PDF file using pdfplumber."""
    try:
        with pdfplumber.open(pdf_file) as pdf:
            text = "\n".join([page.extract_text() or "" for page in pdf.pages])
        return text.strip() if text else None
    except Exception as e:
        raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")

def process_video_to_text(video_file_path):
    """Extract audio from video and convert to text."""
    try:
        print(f"Processing video file at {video_file_path}")
        temp_audio_path = os.path.join("temp", "extracted_audio.wav")
        video = mp.VideoFileClip(video_file_path)
        video.audio.write_audiofile(temp_audio_path, codec='pcm_s16le')
        print(f"Audio extracted to {temp_audio_path}")
        result = speech_to_text(temp_audio_path)
        transcript = result["text"]
        print(f"Transcription completed: {len(transcript)} characters")
        if os.path.exists(temp_audio_path):
            os.remove(temp_audio_path)
        return transcript
    except Exception as e:
        print(f"Error in video processing: {str(e)}")
        raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")

def process_audio_to_text(audio_file_path):
    """Process audio file and convert to text."""
    try:
        print(f"Processing audio file at {audio_file_path}")
        result = speech_to_text(audio_file_path)
        transcript = result["text"]
        print(f"Transcription completed: {len(transcript)} characters")
        return transcript
    except Exception as e:
        print(f"Error in audio processing: {str(e)}")
        raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")

def extract_named_entities(text):
    """Extracts named entities from legal text."""
    max_length = 10000
    entities = []
    for i in range(0, len(text), max_length):
        chunk = text[i:i+max_length]
        doc = nlp(chunk)
        entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
    return entities

def analyze_risk(text):
    """Analyzes legal risk in the document using keyword-based analysis."""
    risk_keywords = {
        "Liability": ["liability", "responsible", "responsibility", "legal obligation"],
        "Termination": ["termination", "breach", "contract end", "default"],
        "Indemnification": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"],
        "Payment Risk": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"],
        "Insurance": ["insurance", "coverage", "policy", "claims"],
    }
    risk_scores = {category: 0 for category in risk_keywords}
    lower_text = text.lower()
    for category, keywords in risk_keywords.items():
        for keyword in keywords:
            risk_scores[category] += lower_text.count(keyword.lower())
    return risk_scores

def extract_context_for_risk_terms(text, risk_keywords, window=1):
    """
    Extracts and summarizes the context around risk terms.
    """
    doc = nlp(text)
    sentences = list(doc.sents)
    risk_contexts = {category: [] for category in risk_keywords}
    for i, sent in enumerate(sentences):
        sent_text_lower = sent.text.lower()
        for category, details in risk_keywords.items():
            for keyword in details["keywords"]:
                if keyword.lower() in sent_text_lower:
                    start_idx = max(0, i - window)
                    end_idx = min(len(sentences), i + window + 1)
                    context_chunk = " ".join([s.text for s in sentences[start_idx:end_idx]])
                    risk_contexts[category].append(context_chunk)
    summarized_contexts = {}
    for category, contexts in risk_contexts.items():
        if contexts:
            combined_context = " ".join(contexts)
            try:
                summary_result = summarizer(combined_context, max_length=100, min_length=30, do_sample=False)
                summary = summary_result[0]['summary_text']
            except Exception as e:
                summary = "Context summarization failed."
            summarized_contexts[category] = summary
        else:
            summarized_contexts[category] = "No contextual details found."
    return summarized_contexts

def get_detailed_risk_info(text):
    """
    Returns detailed risk information by merging risk scores with descriptive details
    and contextual summaries from the document.
    """
    risk_details = {
        "Liability": {
            "description": "Liability refers to the legal responsibility for losses or damages.",
            "common_concerns": "Broad liability clauses may expose parties to unforeseen risks.",
            "recommendations": "Review and negotiate clear limits on liability.",
            "example": "E.g., 'The party shall be liable for direct damages due to negligence.'"
        },
        "Termination": {
            "description": "Termination involves conditions under which a contract can be ended.",
            "common_concerns": "Unilateral termination rights or ambiguous conditions can be risky.",
            "recommendations": "Ensure termination clauses are balanced and include notice periods.",
            "example": "E.g., 'Either party may terminate the agreement with 30 days notice.'"
        },
        "Indemnification": {
            "description": "Indemnification requires one party to compensate for losses incurred by the other.",
            "common_concerns": "Overly broad indemnification can shift significant risk.",
            "recommendations": "Negotiate clear limits and carve-outs where necessary.",
            "example": "E.g., 'The seller shall indemnify the buyer against claims from product defects.'"
        },
        "Payment Risk": {
            "description": "Payment risk pertains to terms regarding fees, schedules, and reimbursements.",
            "common_concerns": "Vague payment terms or hidden charges increase risk.",
            "recommendations": "Clarify payment conditions and include penalties for delays.",
            "example": "E.g., 'Payments must be made within 30 days, with a 2% late fee thereafter.'"
        },
        "Insurance": {
            "description": "Insurance risk covers the adequacy and scope of required coverage.",
            "common_concerns": "Insufficient insurance can leave parties exposed in unexpected events.",
            "recommendations": "Review insurance requirements to ensure they meet the risk profile.",
            "example": "E.g., 'The contractor must maintain liability insurance with at least $1M coverage.'"
        }
    }
    risk_scores = analyze_risk(text)
    risk_keywords_context = {
        "Liability": {"keywords": ["liability", "responsible", "responsibility", "legal obligation"]},
        "Termination": {"keywords": ["termination", "breach", "contract end", "default"]},
        "Indemnification": {"keywords": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"]},
        "Payment Risk": {"keywords": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"]},
        "Insurance": {"keywords": ["insurance", "coverage", "policy", "claims"]}
    }
    risk_contexts = extract_context_for_risk_terms(text, risk_keywords_context, window=1)
    detailed_info = {}
    for risk_term, score in risk_scores.items():
        if score > 0:
            info = risk_details.get(risk_term, {"description": "No details available."})
            detailed_info[risk_term] = {
                "score": score,
                "description": info.get("description", ""),
                "common_concerns": info.get("common_concerns", ""),
                "recommendations": info.get("recommendations", ""),
                "example": info.get("example", ""),
                "context_summary": risk_contexts.get(risk_term, "No context available.")
            }
    return detailed_info

def analyze_contract_clauses(text):
    """Analyzes contract clauses using the fine-tuned CUAD QA model."""
    max_length = 512
    step = 256
    clauses_detected = []
    try:
        clause_types = list(cuad_model.config.id2label.values())
    except Exception as e:
        clause_types = [
            "Obligations of Seller", "Governing Law", "Termination", "Indemnification",
            "Confidentiality", "Insurance", "Non-Compete", "Change of Control",
            "Assignment", "Warranty", "Limitation of Liability", "Arbitration",
            "IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
        ]
    chunks = [text[i:i+max_length] for i in range(0, len(text), step) if i+step < len(text)]
    for chunk in chunks:
        inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512).to(device)
        with torch.no_grad():
            outputs = cuad_model(**inputs)
        predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]  # Using start_logits for example
        for idx, confidence in enumerate(predictions):
            if confidence > 0.5 and idx < len(clause_types):
                clauses_detected.append({"type": clause_types[idx], "confidence": float(confidence)})
    aggregated_clauses = {}
    for clause in clauses_detected:
        clause_type = clause["type"]
        if clause_type not in aggregated_clauses or clause["confidence"] > aggregated_clauses[clause_type]["confidence"]:
            aggregated_clauses[clause_type] = clause
    return list(aggregated_clauses.values())

@app.post("/analyze_legal_document")
async def analyze_legal_document(file: UploadFile = File(...)):
    """Analyzes a legal document for clause detection and compliance risks."""
    try:
        print(f"Processing file: {file.filename}")
        content = await file.read()
        text = extract_text_from_pdf(io.BytesIO(content))
        if not text:
            return {"status": "error", "message": "No valid text found in the document."}
        summary_text = text[:4096] if len(text) > 4096 else text
        summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Document too short for meaningful summarization."
        print("Extracting named entities...")
        entities = extract_named_entities(text)
        print("Analyzing risk...")
        risk_scores = analyze_risk(text)
        detailed_risk = get_detailed_risk_info(text)
        print("Analyzing contract clauses...")
        clauses = analyze_contract_clauses(text)
        generated_task_id = str(uuid.uuid4())
        store_document_context(generated_task_id, text)
        return {
            "status": "success",
            "task_id": generated_task_id,
            "summary": summary,
            "named_entities": entities,
            "risk_scores": risk_scores,
            "detailed_risk": detailed_risk,
            "clauses_detected": clauses
        }
    except Exception as e:
        print(f"Error processing document: {str(e)}")
        return {"status": "error", "message": str(e)}

@app.post("/analyze_legal_video")
async def analyze_legal_video(file: UploadFile = File(...)):
    """Analyzes a legal video by transcribing audio and analyzing the transcript."""
    try:
        print(f"Processing video file: {file.filename}")
        content = await file.read()
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
            temp_file.write(content)
            temp_file_path = temp_file.name
        print(f"Temporary file saved at: {temp_file_path}")
        text = process_video_to_text(temp_file_path)
        if os.path.exists(temp_file_path):
            os.remove(temp_file_path)
        if not text:
            return {"status": "error", "message": "No speech could be transcribed from the video."}
        transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
        with open(transcript_path, "w") as f:
            f.write(text)
        summary_text = text[:4096] if len(text) > 4096 else text
        summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
        print("Extracting named entities from transcript...")
        entities = extract_named_entities(text)
        print("Analyzing risk from transcript...")
        risk_scores = analyze_risk(text)
        detailed_risk = get_detailed_risk_info(text)
        print("Analyzing legal clauses from transcript...")
        clauses = analyze_contract_clauses(text)
        generated_task_id = str(uuid.uuid4())
        store_document_context(generated_task_id, text)
        return {
            "status": "success",
            "task_id": generated_task_id,
            "transcript": text,
            "transcript_path": transcript_path,
            "summary": summary,
            "named_entities": entities,
            "risk_scores": risk_scores,
            "detailed_risk": detailed_risk,
            "clauses_detected": clauses
        }
    except Exception as e:
        print(f"Error processing video: {str(e)}")
        return {"status": "error", "message": str(e)}

@app.post("/analyze_legal_audio")
async def analyze_legal_audio(file: UploadFile = File(...)):
    """Analyzes legal audio by transcribing and analyzing the transcript."""
    try:
        print(f"Processing audio file: {file.filename}")
        content = await file.read()
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
            temp_file.write(content)
            temp_file_path = temp_file.name
        print(f"Temporary file saved at: {temp_file_path}")
        text = process_audio_to_text(temp_file_path)
        if os.path.exists(temp_file_path):
            os.remove(temp_file_path)
        if not text:
            return {"status": "error", "message": "No speech could be transcribed from the audio."}
        transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
        with open(transcript_path, "w") as f:
            f.write(text)
        summary_text = text[:4096] if len(text) > 4096 else text
        summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
        print("Extracting named entities from transcript...")
        entities = extract_named_entities(text)
        print("Analyzing risk from transcript...")
        risk_scores = analyze_risk(text)
        detailed_risk = get_detailed_risk_info(text)
        print("Analyzing legal clauses from transcript...")
        clauses = analyze_contract_clauses(text)
        generated_task_id = str(uuid.uuid4())
        store_document_context(generated_task_id, text)
        return {
            "status": "success",
            "task_id": generated_task_id,
            "transcript": text,
            "transcript_path": transcript_path,
            "summary": summary,
            "named_entities": entities,
            "risk_scores": risk_scores,
            "detailed_risk": detailed_risk,
            "clauses_detected": clauses
        }
    except Exception as e:
        print(f"Error processing audio: {str(e)}")
        return {"status": "error", "message": str(e)}

@app.get("/transcript/{transcript_id}")
async def get_transcript(transcript_id: str):
    """Retrieves a previously generated transcript."""
    transcript_path = os.path.join("static", f"transcript_{transcript_id}.txt")
    if os.path.exists(transcript_path):
        return FileResponse(transcript_path)
    else:
        raise HTTPException(status_code=404, detail="Transcript not found")

@app.post("/legal_chatbot")
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
    """Handles legal Q&A using chat history and document context."""
    document_context = load_document_context(task_id)
    if not document_context:
        return {"response": "⚠️ No relevant document found for this task ID."}
    response = legal_chatbot(query, document_context)
    return {"response": response, "chat_history": chat_history[-5:]}

@app.get("/health")
async def health_check():
    return {
        "status": "ok",
        "models_loaded": True,
        "device": device,
        "gpu_available": torch.cuda.is_available(),
        "timestamp": time.time()
    }

def setup_ngrok():
    """Sets up ngrok tunnel for Google Colab."""
    try:
        auth_token = os.environ.get("NGROK_AUTH_TOKEN")
        if auth_token:
            ngrok.set_auth_token(auth_token)
        ngrok.kill()
        time.sleep(1)
        ngrok_tunnel = ngrok.connect(8500, "http")
        public_url = ngrok_tunnel.public_url
        print(f"✅ Ngrok Public URL: {public_url}")
        def keep_alive():
            while True:
                time.sleep(60)
                try:
                    tunnels = ngrok.get_tunnels()
                    if not tunnels:
                        print("⚠️ Ngrok tunnel closed. Reconnecting...")
                        ngrok_tunnel = ngrok.connect(8500, "http")
                        print(f"✅ Reconnected. New URL: {ngrok_tunnel.public_url}")
                except Exception as e:
                    print(f"⚠️ Ngrok error: {e}")
        Thread(target=keep_alive, daemon=True).start()
        return public_url
    except Exception as e:
        print(f"⚠️ Ngrok setup error: {e}")
        return None

from fastapi.responses import FileResponse

@app.get("/download_risk_chart")
async def download_risk_chart():
    """Generate and return a risk assessment chart as an image file."""
    try:
        os.makedirs("static", exist_ok=True)
        risk_scores = {
            "Liability": 11,
            "Termination": 12,
            "Indemnification": 10,
            "Payment Risk": 41,
            "Insurance": 71
        }
        plt.figure(figsize=(8, 5))
        plt.bar(risk_scores.keys(), risk_scores.values(), color='red')
        plt.xlabel("Risk Categories")
        plt.ylabel("Risk Score")
        plt.title("Legal Risk Assessment")
        plt.xticks(rotation=30)
        risk_chart_path = "static/risk_chart.png"
        plt.savefig(risk_chart_path)
        plt.close()
        return FileResponse(risk_chart_path, media_type="image/png", filename="risk_chart.png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating risk chart: {str(e)}")

@app.get("/download_risk_pie_chart")
async def download_risk_pie_chart():
    try:
        risk_scores = {
            "Liability": 11,
            "Termination": 12,
            "Indemnification": 10,
            "Payment Risk": 41,
            "Insurance": 71
        }
        plt.figure(figsize=(6, 6))
        plt.pie(risk_scores.values(), labels=risk_scores.keys(), autopct='%1.1f%%', startangle=90)
        plt.title("Legal Risk Distribution")
        pie_chart_path = "static/risk_pie_chart.png"
        plt.savefig(pie_chart_path)
        plt.close()
        return FileResponse(pie_chart_path, media_type="image/png", filename="risk_pie_chart.png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating pie chart: {str(e)}")

@app.get("/download_risk_radar_chart")
async def download_risk_radar_chart():
    try:
        risk_scores = {
            "Liability": 11,
            "Termination": 12,
            "Indemnification": 10,
            "Payment Risk": 41,
            "Insurance": 71
        }
        categories = list(risk_scores.keys())
        values = list(risk_scores.values())
        categories += categories[:1]
        values += values[:1]
        angles = np.linspace(0, 2 * np.pi, len(categories), endpoint=False).tolist()
        angles += angles[:1]
        fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
        ax.plot(angles, values, 'o-', linewidth=2)
        ax.fill(angles, values, alpha=0.25)
        ax.set_thetagrids(np.degrees(angles[:-1]), categories)
        ax.set_title("Legal Risk Radar Chart", y=1.1)
        radar_chart_path = "static/risk_radar_chart.png"
        plt.savefig(radar_chart_path)
        plt.close()
        return FileResponse(radar_chart_path, media_type="image/png", filename="risk_radar_chart.png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating radar chart: {str(e)}")

@app.get("/download_risk_trend_chart")
async def download_risk_trend_chart():
    try:
        dates = ["2025-01-01", "2025-02-01", "2025-03-01", "2025-04-01"]
        risk_history = {
            "Liability": [10, 12, 11, 13],
            "Termination": [12, 15, 14, 13],
            "Indemnification": [9, 10, 11, 10],
            "Payment Risk": [40, 42, 41, 43],
            "Insurance": [70, 69, 71, 72]
        }
        plt.figure(figsize=(10, 6))
        for category, scores in risk_history.items():
            plt.plot(dates, scores, marker='o', label=category)
        plt.xlabel("Date")
        plt.ylabel("Risk Score")
        plt.title("Historical Legal Risk Trends")
        plt.xticks(rotation=45)
        plt.legend()
        trend_chart_path = "static/risk_trend_chart.png"
        plt.savefig(trend_chart_path, bbox_inches="tight")
        plt.close()
        return FileResponse(trend_chart_path, media_type="image/png", filename="risk_trend_chart.png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating trend chart: {str(e)}")

import pandas as pd
import plotly.express as px
from fastapi.responses import HTMLResponse

@app.get("/interactive_risk_chart", response_class=HTMLResponse)
async def interactive_risk_chart():
    try:
        risk_scores = {
            "Liability": 11,
            "Termination": 12,
            "Indemnification": 10,
            "Payment Risk": 41,
            "Insurance": 71
        }
        df = pd.DataFrame({
            "Risk Category": list(risk_scores.keys()),
            "Risk Score": list(risk_scores.values())
        })
        fig = px.bar(df, x="Risk Category", y="Risk Score", title="Interactive Legal Risk Assessment")
        return fig.to_html()
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating interactive chart: {str(e)}")

def run():
    """Starts the FastAPI server."""
    print("Starting FastAPI server...")
    uvicorn.run(app, host="0.0.0.0", port=8500, timeout_keep_alive=600)

if __name__ == "__main__":
    public_url = setup_ngrok()
    if public_url:
        print(f"\n✅ Your API is publicly available at: {public_url}/docs\n")
    else:
        print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
    run()