Spaces:
Running
on
T4
Running
on
T4
File size: 28,096 Bytes
2d967e5 b6de26f 2d967e5 08be412 6bbd6b4 2d967e5 b6de26f 08be412 6bbd6b4 08be412 2d967e5 64af888 2d967e5 64af888 2d967e5 64af888 2d967e5 64af888 2d967e5 64af888 2d967e5 08be412 2d967e5 64af888 2d967e5 64af888 2d967e5 64af888 2d967e5 08be412 2d967e5 b6de26f 2d967e5 c575db1 2d967e5 c575db1 2d967e5 08be412 2d967e5 c575db1 64af888 2d967e5 64af888 d629e1d 08be412 2d967e5 a94f8aa 2d967e5 d629e1d 2d967e5 43255fa 6bbd6b4 c4965c8 6bbd6b4 c4965c8 08be412 43255fa 08be412 2d967e5 b6de26f 2d967e5 08be412 2d967e5 a94f8aa 2d967e5 08be412 2d967e5 08be412 2d967e5 21289a5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 6bbd6b4 08be412 6bbd6b4 2d967e5 08be412 2d967e5 b6de26f 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 9597d97 a94f8aa 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 2d967e5 08be412 43255fa 08be412 a94f8aa 43255fa 2d967e5 08be412 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 08be412 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 08be412 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 43255fa 2d967e5 947634e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
import os
os.environ["TRANSFORMERS_NO_FAST"] = "1" # Force use of slow tokenizers
import io
import torch
import uvicorn
import spacy
import pdfplumber
import librosa
import soundfile as sf
import matplotlib.pyplot as plt
import numpy as np
import json
import tempfile
from fastapi import FastAPI, UploadFile, File, HTTPException, Form, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse, HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
from sentence_transformers import SentenceTransformer
from pyngrok import ngrok
from threading import Thread
import time
import uuid
import subprocess # For running ffmpeg commands
import hashlib # For caching file results
# For asynchronous blocking calls
from starlette.concurrency import run_in_threadpool
# Import gensim for topic modeling
import gensim
from gensim import corpora, models
# Import spacy stop words
from spacy.lang.en.stop_words import STOP_WORDS
# Global cache for analysis results based on file hash
analysis_cache = {}
# Ensure compatibility with Google Colab
try:
from google.colab import drive
drive.mount('/content/drive')
except Exception:
pass # Skip drive mount if not in Google Colab
# Ensure required directories exist
os.makedirs("static", exist_ok=True)
os.makedirs("temp", exist_ok=True)
# Ensure GPU usage
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize FastAPI
app = FastAPI(title="Legal Document and Video Analyzer")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# In-memory storage for document text and chat history
document_storage = {}
chat_history = []
# Function to store document context by task ID
def store_document_context(task_id, text):
document_storage[task_id] = text
return True
# Function to load document context by task ID
def load_document_context(task_id):
return document_storage.get(task_id, "")
# Utility to compute MD5 hash from file content
def compute_md5(content: bytes) -> str:
return hashlib.md5(content).hexdigest()
#############################
# Fine-tuning on CUAD QA #
#############################
def fine_tune_cuad_model():
from datasets import load_dataset
import numpy as np
from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering
print("✅ Loading CUAD dataset for fine tuning...")
dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)
if "train" in dataset:
train_dataset = dataset["train"].select(range(50))
if "validation" in dataset:
val_dataset = dataset["validation"].select(range(10))
else:
split = train_dataset.train_test_split(test_size=0.2)
train_dataset = split["train"]
val_dataset = split["test"]
else:
raise ValueError("CUAD dataset does not have a train split")
print("✅ Preparing training features...")
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
def prepare_train_features(examples):
tokenized_examples = tokenizer(
examples["question"],
examples["context"],
truncation="only_second",
max_length=384,
stride=128,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
offset_mapping = tokenized_examples.pop("offset_mapping")
tokenized_examples["start_positions"] = []
tokenized_examples["end_positions"] = []
for i, offsets in enumerate(offset_mapping):
input_ids = tokenized_examples["input_ids"][i]
cls_index = input_ids.index(tokenizer.cls_token_id)
sequence_ids = tokenized_examples.sequence_ids(i)
sample_index = sample_mapping[i]
answers = examples["answers"][sample_index]
if len(answers["answer_start"]) == 0:
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
else:
start_char = answers["answer_start"][0]
end_char = start_char + len(answers["text"][0])
tokenized_start_index = 0
while sequence_ids[tokenized_start_index] != 1:
tokenized_start_index += 1
tokenized_end_index = len(input_ids) - 1
while sequence_ids[tokenized_end_index] != 1:
tokenized_end_index -= 1
if not (offsets[tokenized_start_index][0] <= start_char and offsets[tokenized_end_index][1] >= end_char):
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
else:
while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char:
tokenized_start_index += 1
tokenized_examples["start_positions"].append(tokenized_start_index - 1)
while offsets[tokenized_end_index][1] >= end_char:
tokenized_end_index -= 1
tokenized_examples["end_positions"].append(tokenized_end_index + 1)
return tokenized_examples
print("✅ Tokenizing dataset...")
train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
training_args = TrainingArguments(
output_dir="./fine_tuned_legal_qa",
max_steps=1,
evaluation_strategy="no",
learning_rate=2e-5,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
num_train_epochs=1,
weight_decay=0.01,
logging_steps=1,
save_steps=1,
load_best_model_at_end=False,
report_to=[]
)
print("✅ Starting fine tuning on CUAD QA dataset...")
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
)
trainer.train()
print("✅ Fine tuning completed. Saving model...")
model.save_pretrained("./fine_tuned_legal_qa")
tokenizer.save_pretrained("./fine_tuned_legal_qa")
return tokenizer, model
#############################
# Load NLP Models #
#############################
try:
try:
nlp = spacy.load("en_core_web_sm")
except Exception:
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
print("✅ Loading NLP models...")
# Update summarizer to use facebook/bart-large-cnn for summarization
summarizer = pipeline(
"summarization",
model="facebook/bart-large-cnn",
tokenizer="facebook/bart-large-cnn",
device=0 if torch.cuda.is_available() else -1
)
if device == "cuda":
try:
summarizer.model.half()
except Exception as e:
print("FP16 conversion failed:", e)
embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if torch.cuda.is_available() else -1)
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
device_map="auto" if torch.cuda.is_available() else "cpu")
if os.path.exists("fine_tuned_legal_qa"):
print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
from transformers import AutoModelForQuestionAnswering
cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
cuad_model.to(device)
if device == "cuda":
cuad_model.half()
else:
print("⚠️ Fine-tuned QA model not found. Starting fine tuning on CUAD QA dataset. This may take a while...")
cuad_tokenizer, cuad_model = fine_tune_cuad_model()
cuad_model.to(device)
print("✅ All models loaded successfully")
except Exception as e:
print(f"⚠️ Error loading models: {str(e)}")
raise RuntimeError(f"Error loading models: {str(e)}")
from transformers import pipeline
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=0 if torch.cuda.is_available() else -1)
def legal_chatbot(user_input, context):
global chat_history
chat_history.append({"role": "user", "content": user_input})
response = qa_model(question=user_input, context=context)["answer"]
chat_history.append({"role": "assistant", "content": response})
return response
def extract_text_from_pdf(pdf_file):
try:
with pdfplumber.open(pdf_file) as pdf:
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
return text.strip() if text else None
except Exception as e:
raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")
async def process_video_to_text(video_file_path):
try:
print(f"Processing video file at {video_file_path}")
temp_audio_path = os.path.join("temp", "extracted_audio.wav")
cmd = [
"ffmpeg", "-i", video_file_path, "-vn",
"-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
temp_audio_path, "-y"
]
await run_in_threadpool(subprocess.run, cmd, check=True)
print(f"Audio extracted to {temp_audio_path}")
result = await run_in_threadpool(speech_to_text, temp_audio_path)
transcript = result["text"]
print(f"Transcription completed: {len(transcript)} characters")
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
return transcript
except Exception as e:
print(f"Error in video processing: {str(e)}")
raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")
async def process_audio_to_text(audio_file_path):
try:
print(f"Processing audio file at {audio_file_path}")
result = await run_in_threadpool(speech_to_text, audio_file_path)
transcript = result["text"]
print(f"Transcription completed: {len(transcript)} characters")
return transcript
except Exception as e:
print(f"Error in audio processing: {str(e)}")
raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")
def extract_named_entities(text):
max_length = 10000
entities = []
for i in range(0, len(text), max_length):
chunk = text[i:i+max_length]
doc = nlp(chunk)
entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
return entities
# -----------------------------
# Enhanced Risk Analysis Functions
# -----------------------------
def analyze_sentiment(text):
sentences = [sent.text for sent in nlp(text).sents]
if not sentences:
return 0
results = sentiment_pipeline(sentences, batch_size=16)
scores = [res["score"] if res["label"] == "POSITIVE" else -res["score"] for res in results]
avg_sentiment = sum(scores) / len(scores) if scores else 0
return avg_sentiment
def analyze_topics(text, num_topics=3):
tokens = gensim.utils.simple_preprocess(text, deacc=True)
if not tokens:
return []
dictionary = corpora.Dictionary([tokens])
corpus = [dictionary.doc2bow(tokens)]
lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=10)
topics = lda_model.print_topics(num_topics=num_topics)
return topics
def get_enhanced_context_info(text):
enhanced = {}
enhanced["average_sentiment"] = analyze_sentiment(text)
enhanced["topics"] = analyze_topics(text, num_topics=5)
return enhanced
# New function to create a detailed, dynamic explanation for each topic
def explain_topics(topics):
explanation = {}
for topic_idx, topic_str in topics:
# Split topic string into individual weighted terms
parts = topic_str.split('+')
terms = []
for part in parts:
part = part.strip()
if '*' in part:
weight_str, word = part.split('*', 1)
word = word.strip().strip('\"').strip('\'')
try:
weight = float(weight_str)
except:
weight = 0.0
# Filter out common stop words
if word.lower() not in STOP_WORDS and len(word) > 1:
terms.append((weight, word))
terms.sort(key=lambda x: -x[0])
# Create a plain language label based on dominant words
if terms:
if any("liability" in word.lower() for weight, word in terms):
label = "Liability & Penalty Risk"
elif any("termination" in word.lower() for weight, word in terms):
label = "Termination & Refund Risk"
elif any("compliance" in word.lower() for weight, word in terms):
label = "Compliance & Regulatory Risk"
else:
label = "General Risk Language"
else:
label = "General Risk Language"
explanation_text = (
f"Topic {topic_idx} ({label}) is characterized by dominant terms: " +
", ".join([f"'{word}' ({weight:.3f})" for weight, word in terms[:5]])
)
explanation[topic_idx] = {
"label": label,
"explanation": explanation_text,
"terms": terms
}
return explanation
def analyze_risk_enhanced(text):
enhanced = get_enhanced_context_info(text)
avg_sentiment = enhanced["average_sentiment"]
risk_score = abs(avg_sentiment) if avg_sentiment < 0 else 0
topics_raw = enhanced["topics"]
topics_explanation = explain_topics(topics_raw)
return {
"risk_score": risk_score,
"average_sentiment": avg_sentiment,
"topics": topics_raw,
"topics_explanation": topics_explanation
}
def analyze_contract_clauses(text):
max_length = 512
step = 256
clauses_detected = []
try:
clause_types = list(cuad_model.config.id2label.values())
except Exception:
clause_types = [
"Obligations of Seller", "Governing Law", "Termination", "Indemnification",
"Confidentiality", "Insurance", "Non-Compete", "Change of Control",
"Assignment", "Warranty", "Limitation of Liability", "Arbitration",
"IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
]
chunks = [text[i:i+max_length] for i in range(0, len(text), step) if i+step < len(text)]
for chunk in chunks:
inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = cuad_model(**inputs)
predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
for idx, confidence in enumerate(predictions):
if confidence > 0.5 and idx < len(clause_types):
clauses_detected.append({"type": clause_types[idx], "confidence": float(confidence)})
aggregated_clauses = {}
for clause in clauses_detected:
clause_type = clause["type"]
if clause_type not in aggregated_clauses or clause["confidence"] > aggregated_clauses[clause_type]["confidence"]:
aggregated_clauses[clause_type] = clause
return list(aggregated_clauses.values())
# -----------------------------
# Endpoints
# -----------------------------
@app.post("/analyze_legal_document")
async def analyze_legal_document(file: UploadFile = File(...)):
try:
content = await file.read()
file_hash = compute_md5(content)
if file_hash in analysis_cache:
return analysis_cache[file_hash]
text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
if not text:
return {"status": "error", "message": "No valid text found in the document."}
summary_text = text[:4096] if len(text) > 4096 else text
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Document too short for meaningful summarization."
entities = extract_named_entities(text)
risk_analysis = analyze_risk_enhanced(text)
clauses = analyze_contract_clauses(text)
generated_task_id = str(uuid.uuid4())
store_document_context(generated_task_id, text)
result = {
"status": "success",
"task_id": generated_task_id,
"summary": summary,
"named_entities": entities,
"risk_analysis": risk_analysis,
"clauses_detected": clauses
}
analysis_cache[file_hash] = result
return result
except Exception as e:
return {"status": "error", "message": str(e)}
@app.post("/analyze_legal_video")
async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
try:
content = await file.read()
file_hash = compute_md5(content)
if file_hash in analysis_cache:
return analysis_cache[file_hash]
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
temp_file.write(content)
temp_file_path = temp_file.name
text = await process_video_to_text(temp_file_path)
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
if not text:
return {"status": "error", "message": "No speech could be transcribed from the video."}
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
with open(transcript_path, "w") as f:
f.write(text)
summary_text = text[:4096] if len(text) > 4096 else text
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
entities = extract_named_entities(text)
risk_analysis = analyze_risk_enhanced(text)
clauses = analyze_contract_clauses(text)
generated_task_id = str(uuid.uuid4())
store_document_context(generated_task_id, text)
result = {
"status": "success",
"task_id": generated_task_id,
"transcript": text,
"transcript_path": transcript_path,
"summary": summary,
"named_entities": entities,
"risk_analysis": risk_analysis,
"clauses_detected": clauses
}
analysis_cache[file_hash] = result
return result
except Exception as e:
return {"status": "error", "message": str(e)}
@app.post("/analyze_legal_audio")
async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
try:
content = await file.read()
file_hash = compute_md5(content)
if file_hash in analysis_cache:
return analysis_cache[file_hash]
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
temp_file.write(content)
temp_file_path = temp_file.name
text = await process_audio_to_text(temp_audio_path=temp_file_path)
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
if not text:
return {"status": "error", "message": "No speech could be transcribed from the audio."}
transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
with open(transcript_path, "w") as f:
f.write(text)
summary_text = text[:4096] if len(text) > 4096 else text
summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
entities = extract_named_entities(text)
risk_analysis = analyze_risk_enhanced(text)
clauses = analyze_contract_clauses(text)
generated_task_id = str(uuid.uuid4())
store_document_context(generated_task_id, text)
result = {
"status": "success",
"task_id": generated_task_id,
"transcript": text,
"transcript_path": transcript_path,
"summary": summary,
"named_entities": entities,
"risk_analysis": risk_analysis,
"clauses_detected": clauses
}
analysis_cache[file_hash] = result
return result
except Exception as e:
return {"status": "error", "message": str(e)}
@app.get("/transcript/{transcript_id}")
async def get_transcript(transcript_id: str):
transcript_path = os.path.join("static", f"transcript_{transcript_id}.txt")
if os.path.exists(transcript_path):
return FileResponse(transcript_path)
else:
raise HTTPException(status_code=404, detail="Transcript not found")
@app.post("/legal_chatbot")
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
document_context = load_document_context(task_id)
if not document_context:
return {"response": "⚠️ No relevant document found for this task ID."}
response = legal_chatbot(query, document_context)
return {"response": response, "chat_history": chat_history[-5:]}
@app.get("/health")
async def health_check():
return {
"status": "ok",
"models_loaded": True,
"device": device,
"gpu_available": torch.cuda.is_available(),
"timestamp": time.time()
}
def setup_ngrok():
try:
auth_token = os.environ.get("NGROK_AUTH_TOKEN")
if auth_token:
ngrok.set_auth_token(auth_token)
ngrok.kill()
time.sleep(1)
ngrok_tunnel = ngrok.connect(8500, "http")
public_url = ngrok_tunnel.public_url
print(f"✅ Ngrok Public URL: {public_url}")
def keep_alive():
while True:
time.sleep(60)
try:
tunnels = ngrok.get_tunnels()
if not tunnels:
print("⚠️ Ngrok tunnel closed. Reconnecting...")
ngrok_tunnel = ngrok.connect(8500, "http")
print(f"✅ Reconnected. New URL: {ngrok_tunnel.public_url}")
except Exception as e:
print(f"⚠️ Ngrok error: {e}")
Thread(target=keep_alive, daemon=True).start()
return public_url
except Exception as e:
print(f"⚠️ Ngrok setup error: {e}")
return None
# ------------------------------
# Clause Visualization Endpoints
# ------------------------------
@app.get("/download_clause_bar_chart")
async def download_clause_bar_chart(task_id: str):
try:
text = load_document_context(task_id)
if not text:
raise HTTPException(status_code=404, detail="Document context not found")
clauses = analyze_contract_clauses(text)
if not clauses:
raise HTTPException(status_code=404, detail="No clauses detected.")
clause_types = [c["type"] for c in clauses]
confidences = [c["confidence"] for c in clauses]
plt.figure(figsize=(10, 6))
plt.bar(clause_types, confidences, color='blue')
plt.xlabel("Clause Type")
plt.ylabel("Confidence Score")
plt.title("Extracted Legal Clause Confidence Scores")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
bar_chart_path = os.path.join("static", f"clause_bar_chart_{task_id}.png")
plt.savefig(bar_chart_path)
plt.close()
return FileResponse(bar_chart_path, media_type="image/png", filename=f"clause_bar_chart_{task_id}.png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating clause bar chart: {str(e)}")
@app.get("/download_clause_donut_chart")
async def download_clause_donut_chart(task_id: str):
try:
text = load_document_context(task_id)
if not text:
raise HTTPException(status_code=404, detail="Document context not found")
clauses = analyze_contract_clauses(text)
if not clauses:
raise HTTPException(status_code=404, detail="No clauses detected.")
from collections import Counter
clause_counter = Counter([c["type"] for c in clauses])
labels = list(clause_counter.keys())
sizes = list(clause_counter.values())
plt.figure(figsize=(6, 6))
wedges, texts, autotexts = plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
centre_circle = plt.Circle((0, 0), 0.70, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title("Clause Type Distribution")
plt.tight_layout()
donut_chart_path = os.path.join("static", f"clause_donut_chart_{task_id}.png")
plt.savefig(donut_chart_path)
plt.close()
return FileResponse(donut_chart_path, media_type="image/png", filename=f"clause_donut_chart_{task_id}.png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating clause donut chart: {str(e)}")
@app.get("/download_clause_radar_chart")
async def download_clause_radar_chart(task_id: str):
try:
text = load_document_context(task_id)
if not text:
raise HTTPException(status_code=404, detail="Document context not found")
clauses = analyze_contract_clauses(text)
if not clauses:
raise HTTPException(status_code=404, detail="No clauses detected.")
labels = [c["type"] for c in clauses]
values = [c["confidence"] for c in clauses]
labels += labels[:1]
values += values[:1]
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
angles += angles[:1]
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
ax.plot(angles, values, 'o-', linewidth=2)
ax.fill(angles, values, alpha=0.25)
ax.set_thetagrids(np.degrees(angles[:-1]), labels[:-1])
ax.set_title("Legal Clause Radar Chart", y=1.1)
radar_chart_path = os.path.join("static", f"clause_radar_chart_{task_id}.png")
plt.savefig(radar_chart_path)
plt.close()
return FileResponse(radar_chart_path, media_type="image/png", filename=f"clause_radar_chart_{task_id}.png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating clause radar chart: {str(e)}")
def run():
print("Starting FastAPI server...")
uvicorn.run(app, host="0.0.0.0", port=8500, timeout_keep_alive=600)
if __name__ == "__main__":
public_url = setup_ngrok()
if public_url:
print(f"\n✅ Your API is publicly available at: {public_url}/docs\n")
else:
print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
run()
|