File size: 28,096 Bytes
2d967e5
b6de26f
 
2d967e5
 
 
 
 
 
 
 
 
 
 
08be412
6bbd6b4
2d967e5
 
 
 
 
 
 
b6de26f
08be412
 
 
 
 
 
 
 
 
6bbd6b4
 
 
08be412
 
2d967e5
64af888
2d967e5
 
 
64af888
2d967e5
 
64af888
2d967e5
 
 
64af888
2d967e5
 
64af888
2d967e5
 
 
 
 
 
 
 
 
 
 
08be412
2d967e5
64af888
2d967e5
64af888
2d967e5
 
 
 
64af888
2d967e5
 
 
08be412
 
 
 
2d967e5
 
 
 
 
 
 
b6de26f
2d967e5
 
 
 
 
c575db1
2d967e5
c575db1
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08be412
 
2d967e5
c575db1
 
64af888
2d967e5
64af888
d629e1d
 
08be412
2d967e5
 
 
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d629e1d
2d967e5
 
 
43255fa
6bbd6b4
c4965c8
 
6bbd6b4
 
c4965c8
 
08be412
43255fa
 
 
 
08be412
2d967e5
b6de26f
 
 
2d967e5
 
 
 
 
 
08be412
 
2d967e5
 
 
 
 
 
 
 
 
a94f8aa
2d967e5
08be412
 
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08be412
2d967e5
 
 
21289a5
 
 
 
 
08be412
2d967e5
08be412
2d967e5
 
 
 
 
 
 
 
 
08be412
2d967e5
 
08be412
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08be412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bbd6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08be412
 
 
 
6bbd6b4
 
 
 
 
 
 
 
2d967e5
 
 
 
 
 
 
08be412
2d967e5
 
 
 
 
 
 
 
 
 
 
b6de26f
2d967e5
 
 
 
 
 
 
 
 
 
08be412
 
 
 
2d967e5
 
 
 
08be412
 
 
 
2d967e5
 
 
 
 
08be412
2d967e5
 
 
08be412
2d967e5
 
 
 
08be412
2d967e5
 
08be412
 
2d967e5
 
 
 
08be412
2d967e5
 
08be412
 
 
2d967e5
 
 
08be412
2d967e5
 
 
 
 
 
 
 
 
 
08be412
2d967e5
 
 
08be412
2d967e5
 
 
 
 
 
08be412
2d967e5
 
08be412
 
2d967e5
 
 
 
08be412
2d967e5
 
08be412
 
 
2d967e5
 
 
9597d97
a94f8aa
2d967e5
 
 
 
 
 
 
 
 
08be412
2d967e5
 
 
08be412
2d967e5
 
 
 
 
 
08be412
2d967e5
 
08be412
 
2d967e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08be412
43255fa
08be412
a94f8aa
43255fa
 
2d967e5
08be412
 
 
43255fa
 
 
 
 
 
 
 
 
 
 
 
 
 
2d967e5
43255fa
2d967e5
43255fa
2d967e5
43255fa
 
2d967e5
08be412
 
 
43255fa
 
 
 
 
 
 
2d967e5
43255fa
 
 
 
 
 
 
 
2d967e5
43255fa
2d967e5
43255fa
2d967e5
43255fa
 
2d967e5
08be412
 
 
43255fa
 
 
 
 
 
2d967e5
43255fa
2d967e5
 
 
 
43255fa
 
 
2d967e5
 
43255fa
2d967e5
43255fa
2d967e5
 
 
 
 
 
 
 
 
 
 
947634e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
import os
os.environ["TRANSFORMERS_NO_FAST"] = "1"  # Force use of slow tokenizers

import io
import torch
import uvicorn
import spacy
import pdfplumber
import librosa
import soundfile as sf
import matplotlib.pyplot as plt
import numpy as np
import json
import tempfile
from fastapi import FastAPI, UploadFile, File, HTTPException, Form, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse, HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
from sentence_transformers import SentenceTransformer
from pyngrok import ngrok
from threading import Thread
import time
import uuid
import subprocess  # For running ffmpeg commands
import hashlib  # For caching file results

# For asynchronous blocking calls
from starlette.concurrency import run_in_threadpool

# Import gensim for topic modeling
import gensim
from gensim import corpora, models

# Import spacy stop words
from spacy.lang.en.stop_words import STOP_WORDS

# Global cache for analysis results based on file hash
analysis_cache = {}

# Ensure compatibility with Google Colab
try:
    from google.colab import drive
    drive.mount('/content/drive')
except Exception:
    pass  # Skip drive mount if not in Google Colab

# Ensure required directories exist
os.makedirs("static", exist_ok=True)
os.makedirs("temp", exist_ok=True)

# Ensure GPU usage
device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize FastAPI
app = FastAPI(title="Legal Document and Video Analyzer")

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# In-memory storage for document text and chat history
document_storage = {}
chat_history = []

# Function to store document context by task ID
def store_document_context(task_id, text):
    document_storage[task_id] = text
    return True

# Function to load document context by task ID
def load_document_context(task_id):
    return document_storage.get(task_id, "")

# Utility to compute MD5 hash from file content
def compute_md5(content: bytes) -> str:
    return hashlib.md5(content).hexdigest()

#############################
#   Fine-tuning on CUAD QA   #
#############################

def fine_tune_cuad_model():
    from datasets import load_dataset
    import numpy as np
    from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering

    print("✅ Loading CUAD dataset for fine tuning...")
    dataset = load_dataset("theatticusproject/cuad-qa", trust_remote_code=True)

    if "train" in dataset:
        train_dataset = dataset["train"].select(range(50))
        if "validation" in dataset:
            val_dataset = dataset["validation"].select(range(10))
        else:
            split = train_dataset.train_test_split(test_size=0.2)
            train_dataset = split["train"]
            val_dataset = split["test"]
    else:
        raise ValueError("CUAD dataset does not have a train split")

    print("✅ Preparing training features...")
    tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
    model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")

    def prepare_train_features(examples):
        tokenized_examples = tokenizer(
            examples["question"],
            examples["context"],
            truncation="only_second",
            max_length=384,
            stride=128,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length",
        )
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        offset_mapping = tokenized_examples.pop("offset_mapping")
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []
        for i, offsets in enumerate(offset_mapping):
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)
            sequence_ids = tokenized_examples.sequence_ids(i)
            sample_index = sample_mapping[i]
            answers = examples["answers"][sample_index]
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])
                tokenized_start_index = 0
                while sequence_ids[tokenized_start_index] != 1:
                    tokenized_start_index += 1
                tokenized_end_index = len(input_ids) - 1
                while sequence_ids[tokenized_end_index] != 1:
                    tokenized_end_index -= 1
                if not (offsets[tokenized_start_index][0] <= start_char and offsets[tokenized_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                else:
                    while tokenized_start_index < len(offsets) and offsets[tokenized_start_index][0] <= start_char:
                        tokenized_start_index += 1
                    tokenized_examples["start_positions"].append(tokenized_start_index - 1)
                    while offsets[tokenized_end_index][1] >= end_char:
                        tokenized_end_index -= 1
                    tokenized_examples["end_positions"].append(tokenized_end_index + 1)
        return tokenized_examples

    print("✅ Tokenizing dataset...")
    train_dataset = train_dataset.map(prepare_train_features, batched=True, remove_columns=train_dataset.column_names)
    val_dataset = val_dataset.map(prepare_train_features, batched=True, remove_columns=val_dataset.column_names)
    train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])
    val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"])

    training_args = TrainingArguments(
        output_dir="./fine_tuned_legal_qa",
        max_steps=1,
        evaluation_strategy="no",
        learning_rate=2e-5,
        per_device_train_batch_size=4,
        per_device_eval_batch_size=4,
        num_train_epochs=1,
        weight_decay=0.01,
        logging_steps=1,
        save_steps=1,
        load_best_model_at_end=False,
        report_to=[]
    )

    print("✅ Starting fine tuning on CUAD QA dataset...")
    from transformers import Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=val_dataset,
        tokenizer=tokenizer,
    )
    trainer.train()
    print("✅ Fine tuning completed. Saving model...")
    model.save_pretrained("./fine_tuned_legal_qa")
    tokenizer.save_pretrained("./fine_tuned_legal_qa")
    return tokenizer, model

#############################
#    Load NLP Models       #
#############################

try:
    try:
        nlp = spacy.load("en_core_web_sm")
    except Exception:
        spacy.cli.download("en_core_web_sm")
        nlp = spacy.load("en_core_web_sm")
    print("✅ Loading NLP models...")

    # Update summarizer to use facebook/bart-large-cnn for summarization
    summarizer = pipeline(
        "summarization",
        model="facebook/bart-large-cnn",
        tokenizer="facebook/bart-large-cnn",
        device=0 if torch.cuda.is_available() else -1
    )
    if device == "cuda":
        try:
            summarizer.model.half()
        except Exception as e:
            print("FP16 conversion failed:", e)

    embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device)
    ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if torch.cuda.is_available() else -1)
    speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
                              device_map="auto" if torch.cuda.is_available() else "cpu")
    if os.path.exists("fine_tuned_legal_qa"):
        print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
        cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
        from transformers import AutoModelForQuestionAnswering
        cuad_model = AutoModelForQuestionAnswering.from_pretrained("fine_tuned_legal_qa")
        cuad_model.to(device)
        if device == "cuda":
            cuad_model.half()
    else:
        print("⚠️ Fine-tuned QA model not found. Starting fine tuning on CUAD QA dataset. This may take a while...")
        cuad_tokenizer, cuad_model = fine_tune_cuad_model()
        cuad_model.to(device)
    print("✅ All models loaded successfully")
except Exception as e:
    print(f"⚠️ Error loading models: {str(e)}")
    raise RuntimeError(f"Error loading models: {str(e)}")

from transformers import pipeline
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=0 if torch.cuda.is_available() else -1)

def legal_chatbot(user_input, context):
    global chat_history
    chat_history.append({"role": "user", "content": user_input})
    response = qa_model(question=user_input, context=context)["answer"]
    chat_history.append({"role": "assistant", "content": response})
    return response

def extract_text_from_pdf(pdf_file):
    try:
        with pdfplumber.open(pdf_file) as pdf:
            text = "\n".join([page.extract_text() or "" for page in pdf.pages])
        return text.strip() if text else None
    except Exception as e:
        raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}")

async def process_video_to_text(video_file_path):
    try:
        print(f"Processing video file at {video_file_path}")
        temp_audio_path = os.path.join("temp", "extracted_audio.wav")
        cmd = [
            "ffmpeg", "-i", video_file_path, "-vn",
            "-acodec", "pcm_s16le", "-ar", "44100", "-ac", "2",
            temp_audio_path, "-y"
        ]
        await run_in_threadpool(subprocess.run, cmd, check=True)
        print(f"Audio extracted to {temp_audio_path}")
        result = await run_in_threadpool(speech_to_text, temp_audio_path)
        transcript = result["text"]
        print(f"Transcription completed: {len(transcript)} characters")
        if os.path.exists(temp_audio_path):
            os.remove(temp_audio_path)
        return transcript
    except Exception as e:
        print(f"Error in video processing: {str(e)}")
        raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}")

async def process_audio_to_text(audio_file_path):
    try:
        print(f"Processing audio file at {audio_file_path}")
        result = await run_in_threadpool(speech_to_text, audio_file_path)
        transcript = result["text"]
        print(f"Transcription completed: {len(transcript)} characters")
        return transcript
    except Exception as e:
        print(f"Error in audio processing: {str(e)}")
        raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}")

def extract_named_entities(text):
    max_length = 10000
    entities = []
    for i in range(0, len(text), max_length):
        chunk = text[i:i+max_length]
        doc = nlp(chunk)
        entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents])
    return entities

# -----------------------------
# Enhanced Risk Analysis Functions
# -----------------------------

def analyze_sentiment(text):
    sentences = [sent.text for sent in nlp(text).sents]
    if not sentences:
        return 0
    results = sentiment_pipeline(sentences, batch_size=16)
    scores = [res["score"] if res["label"] == "POSITIVE" else -res["score"] for res in results]
    avg_sentiment = sum(scores) / len(scores) if scores else 0
    return avg_sentiment

def analyze_topics(text, num_topics=3):
    tokens = gensim.utils.simple_preprocess(text, deacc=True)
    if not tokens:
        return []
    dictionary = corpora.Dictionary([tokens])
    corpus = [dictionary.doc2bow(tokens)]
    lda_model = models.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=10)
    topics = lda_model.print_topics(num_topics=num_topics)
    return topics

def get_enhanced_context_info(text):
    enhanced = {}
    enhanced["average_sentiment"] = analyze_sentiment(text)
    enhanced["topics"] = analyze_topics(text, num_topics=5)
    return enhanced

# New function to create a detailed, dynamic explanation for each topic
def explain_topics(topics):
    explanation = {}
    for topic_idx, topic_str in topics:
        # Split topic string into individual weighted terms
        parts = topic_str.split('+')
        terms = []
        for part in parts:
            part = part.strip()
            if '*' in part:
                weight_str, word = part.split('*', 1)
                word = word.strip().strip('\"').strip('\'')
                try:
                    weight = float(weight_str)
                except:
                    weight = 0.0
                # Filter out common stop words
                if word.lower() not in STOP_WORDS and len(word) > 1:
                    terms.append((weight, word))
        terms.sort(key=lambda x: -x[0])
        # Create a plain language label based on dominant words
        if terms:
            if any("liability" in word.lower() for weight, word in terms):
                label = "Liability & Penalty Risk"
            elif any("termination" in word.lower() for weight, word in terms):
                label = "Termination & Refund Risk"
            elif any("compliance" in word.lower() for weight, word in terms):
                label = "Compliance & Regulatory Risk"
            else:
                label = "General Risk Language"
        else:
            label = "General Risk Language"
        explanation_text = (
            f"Topic {topic_idx} ({label}) is characterized by dominant terms: " +
            ", ".join([f"'{word}' ({weight:.3f})" for weight, word in terms[:5]])
        )
        explanation[topic_idx] = {
            "label": label,
            "explanation": explanation_text,
            "terms": terms
        }
    return explanation

def analyze_risk_enhanced(text):
    enhanced = get_enhanced_context_info(text)
    avg_sentiment = enhanced["average_sentiment"]
    risk_score = abs(avg_sentiment) if avg_sentiment < 0 else 0
    topics_raw = enhanced["topics"]
    topics_explanation = explain_topics(topics_raw)
    return {
        "risk_score": risk_score,
        "average_sentiment": avg_sentiment,
        "topics": topics_raw,
        "topics_explanation": topics_explanation
    }

def analyze_contract_clauses(text):
    max_length = 512
    step = 256
    clauses_detected = []
    try:
        clause_types = list(cuad_model.config.id2label.values())
    except Exception:
        clause_types = [
            "Obligations of Seller", "Governing Law", "Termination", "Indemnification",
            "Confidentiality", "Insurance", "Non-Compete", "Change of Control",
            "Assignment", "Warranty", "Limitation of Liability", "Arbitration",
            "IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights"
        ]
    chunks = [text[i:i+max_length] for i in range(0, len(text), step) if i+step < len(text)]
    for chunk in chunks:
        inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512).to(device)
        with torch.no_grad():
            outputs = cuad_model(**inputs)
        predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0]
        for idx, confidence in enumerate(predictions):
            if confidence > 0.5 and idx < len(clause_types):
                clauses_detected.append({"type": clause_types[idx], "confidence": float(confidence)})
    aggregated_clauses = {}
    for clause in clauses_detected:
        clause_type = clause["type"]
        if clause_type not in aggregated_clauses or clause["confidence"] > aggregated_clauses[clause_type]["confidence"]:
            aggregated_clauses[clause_type] = clause
    return list(aggregated_clauses.values())

# -----------------------------
# Endpoints
# -----------------------------

@app.post("/analyze_legal_document")
async def analyze_legal_document(file: UploadFile = File(...)):
    try:
        content = await file.read()
        file_hash = compute_md5(content)
        if file_hash in analysis_cache:
            return analysis_cache[file_hash]
        text = await run_in_threadpool(extract_text_from_pdf, io.BytesIO(content))
        if not text:
            return {"status": "error", "message": "No valid text found in the document."}
        summary_text = text[:4096] if len(text) > 4096 else text
        summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Document too short for meaningful summarization."
        entities = extract_named_entities(text)
        risk_analysis = analyze_risk_enhanced(text)
        clauses = analyze_contract_clauses(text)
        generated_task_id = str(uuid.uuid4())
        store_document_context(generated_task_id, text)
        result = {
            "status": "success",
            "task_id": generated_task_id,
            "summary": summary,
            "named_entities": entities,
            "risk_analysis": risk_analysis,
            "clauses_detected": clauses
        }
        analysis_cache[file_hash] = result
        return result
    except Exception as e:
        return {"status": "error", "message": str(e)}

@app.post("/analyze_legal_video")
async def analyze_legal_video(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
    try:
        content = await file.read()
        file_hash = compute_md5(content)
        if file_hash in analysis_cache:
            return analysis_cache[file_hash]
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
            temp_file.write(content)
            temp_file_path = temp_file.name
        text = await process_video_to_text(temp_file_path)
        if os.path.exists(temp_file_path):
            os.remove(temp_file_path)
        if not text:
            return {"status": "error", "message": "No speech could be transcribed from the video."}
        transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
        with open(transcript_path, "w") as f:
            f.write(text)
        summary_text = text[:4096] if len(text) > 4096 else text
        summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
        entities = extract_named_entities(text)
        risk_analysis = analyze_risk_enhanced(text)
        clauses = analyze_contract_clauses(text)
        generated_task_id = str(uuid.uuid4())
        store_document_context(generated_task_id, text)
        result = {
            "status": "success",
            "task_id": generated_task_id,
            "transcript": text,
            "transcript_path": transcript_path,
            "summary": summary,
            "named_entities": entities,
            "risk_analysis": risk_analysis,
            "clauses_detected": clauses
        }
        analysis_cache[file_hash] = result
        return result
    except Exception as e:
        return {"status": "error", "message": str(e)}

@app.post("/analyze_legal_audio")
async def analyze_legal_audio(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
    try:
        content = await file.read()
        file_hash = compute_md5(content)
        if file_hash in analysis_cache:
            return analysis_cache[file_hash]
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
            temp_file.write(content)
            temp_file_path = temp_file.name
        text = await process_audio_to_text(temp_audio_path=temp_file_path)
        if os.path.exists(temp_file_path):
            os.remove(temp_file_path)
        if not text:
            return {"status": "error", "message": "No speech could be transcribed from the audio."}
        transcript_path = os.path.join("static", f"transcript_{int(time.time())}.txt")
        with open(transcript_path, "w") as f:
            f.write(text)
        summary_text = text[:4096] if len(text) > 4096 else text
        summary = summarizer(summary_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] if len(text) > 100 else "Transcript too short for meaningful summarization."
        entities = extract_named_entities(text)
        risk_analysis = analyze_risk_enhanced(text)
        clauses = analyze_contract_clauses(text)
        generated_task_id = str(uuid.uuid4())
        store_document_context(generated_task_id, text)
        result = {
            "status": "success",
            "task_id": generated_task_id,
            "transcript": text,
            "transcript_path": transcript_path,
            "summary": summary,
            "named_entities": entities,
            "risk_analysis": risk_analysis,
            "clauses_detected": clauses
        }
        analysis_cache[file_hash] = result
        return result
    except Exception as e:
        return {"status": "error", "message": str(e)}

@app.get("/transcript/{transcript_id}")
async def get_transcript(transcript_id: str):
    transcript_path = os.path.join("static", f"transcript_{transcript_id}.txt")
    if os.path.exists(transcript_path):
        return FileResponse(transcript_path)
    else:
        raise HTTPException(status_code=404, detail="Transcript not found")

@app.post("/legal_chatbot")
async def legal_chatbot_api(query: str = Form(...), task_id: str = Form(...)):
    document_context = load_document_context(task_id)
    if not document_context:
        return {"response": "⚠️ No relevant document found for this task ID."}
    response = legal_chatbot(query, document_context)
    return {"response": response, "chat_history": chat_history[-5:]}

@app.get("/health")
async def health_check():
    return {
        "status": "ok",
        "models_loaded": True,
        "device": device,
        "gpu_available": torch.cuda.is_available(),
        "timestamp": time.time()
    }

def setup_ngrok():
    try:
        auth_token = os.environ.get("NGROK_AUTH_TOKEN")
        if auth_token:
            ngrok.set_auth_token(auth_token)
        ngrok.kill()
        time.sleep(1)
        ngrok_tunnel = ngrok.connect(8500, "http")
        public_url = ngrok_tunnel.public_url
        print(f"✅ Ngrok Public URL: {public_url}")
        def keep_alive():
            while True:
                time.sleep(60)
                try:
                    tunnels = ngrok.get_tunnels()
                    if not tunnels:
                        print("⚠️ Ngrok tunnel closed. Reconnecting...")
                        ngrok_tunnel = ngrok.connect(8500, "http")
                        print(f"✅ Reconnected. New URL: {ngrok_tunnel.public_url}")
                except Exception as e:
                    print(f"⚠️ Ngrok error: {e}")
        Thread(target=keep_alive, daemon=True).start()
        return public_url
    except Exception as e:
        print(f"⚠️ Ngrok setup error: {e}")
        return None

# ------------------------------
# Clause Visualization Endpoints
# ------------------------------

@app.get("/download_clause_bar_chart")
async def download_clause_bar_chart(task_id: str):
    try:
        text = load_document_context(task_id)
        if not text:
            raise HTTPException(status_code=404, detail="Document context not found")
        clauses = analyze_contract_clauses(text)
        if not clauses:
            raise HTTPException(status_code=404, detail="No clauses detected.")
        clause_types = [c["type"] for c in clauses]
        confidences = [c["confidence"] for c in clauses]
        plt.figure(figsize=(10, 6))
        plt.bar(clause_types, confidences, color='blue')
        plt.xlabel("Clause Type")
        plt.ylabel("Confidence Score")
        plt.title("Extracted Legal Clause Confidence Scores")
        plt.xticks(rotation=45, ha="right")
        plt.tight_layout()
        bar_chart_path = os.path.join("static", f"clause_bar_chart_{task_id}.png")
        plt.savefig(bar_chart_path)
        plt.close()
        return FileResponse(bar_chart_path, media_type="image/png", filename=f"clause_bar_chart_{task_id}.png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating clause bar chart: {str(e)}")

@app.get("/download_clause_donut_chart")
async def download_clause_donut_chart(task_id: str):
    try:
        text = load_document_context(task_id)
        if not text:
            raise HTTPException(status_code=404, detail="Document context not found")
        clauses = analyze_contract_clauses(text)
        if not clauses:
            raise HTTPException(status_code=404, detail="No clauses detected.")
        from collections import Counter
        clause_counter = Counter([c["type"] for c in clauses])
        labels = list(clause_counter.keys())
        sizes = list(clause_counter.values())
        plt.figure(figsize=(6, 6))
        wedges, texts, autotexts = plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
        centre_circle = plt.Circle((0, 0), 0.70, fc='white')
        fig = plt.gcf()
        fig.gca().add_artist(centre_circle)
        plt.title("Clause Type Distribution")
        plt.tight_layout()
        donut_chart_path = os.path.join("static", f"clause_donut_chart_{task_id}.png")
        plt.savefig(donut_chart_path)
        plt.close()
        return FileResponse(donut_chart_path, media_type="image/png", filename=f"clause_donut_chart_{task_id}.png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating clause donut chart: {str(e)}")

@app.get("/download_clause_radar_chart")
async def download_clause_radar_chart(task_id: str):
    try:
        text = load_document_context(task_id)
        if not text:
            raise HTTPException(status_code=404, detail="Document context not found")
        clauses = analyze_contract_clauses(text)
        if not clauses:
            raise HTTPException(status_code=404, detail="No clauses detected.")
        labels = [c["type"] for c in clauses]
        values = [c["confidence"] for c in clauses]
        labels += labels[:1]
        values += values[:1]
        angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
        angles += angles[:1]
        fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
        ax.plot(angles, values, 'o-', linewidth=2)
        ax.fill(angles, values, alpha=0.25)
        ax.set_thetagrids(np.degrees(angles[:-1]), labels[:-1])
        ax.set_title("Legal Clause Radar Chart", y=1.1)
        radar_chart_path = os.path.join("static", f"clause_radar_chart_{task_id}.png")
        plt.savefig(radar_chart_path)
        plt.close()
        return FileResponse(radar_chart_path, media_type="image/png", filename=f"clause_radar_chart_{task_id}.png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating clause radar chart: {str(e)}")

def run():
    print("Starting FastAPI server...")
    uvicorn.run(app, host="0.0.0.0", port=8500, timeout_keep_alive=600)

if __name__ == "__main__":
    public_url = setup_ngrok()
    if public_url:
        print(f"\n✅ Your API is publicly available at: {public_url}/docs\n")
    else:
        print("\n⚠️ Ngrok setup failed. API will only be available locally.\n")
    run()