Spaces:
Sleeping
Sleeping
File size: 20,249 Bytes
a3280e8 0126cb1 a3280e8 c219480 4aa28d5 a3280e8 1259f25 c219480 4aa28d5 a3280e8 13906ad d5eddbc 13906ad d5eddbc 13906ad a3280e8 4aa28d5 9e9de90 000000e 18b432b a3280e8 9e9de90 a3280e8 000000e a3280e8 18b432b 4aa28d5 13906ad c219480 dc774e7 18b432b c219480 a3280e8 9e9de90 4aa28d5 000000e 4aa28d5 000000e c219480 000000e c219480 13906ad c219480 4aa28d5 ce729c5 4aa28d5 13906ad 4aa28d5 c219480 4aa28d5 c219480 4aa28d5 c219480 4aa28d5 ce729c5 4aa28d5 ce729c5 4aa28d5 ce729c5 4aa28d5 989e499 03d5dfe 989e499 4aa28d5 989e499 13906ad 4aa28d5 c219480 4aa28d5 c219480 4aa28d5 56b5571 c219480 9e9de90 c219480 9e9de90 c219480 9e9de90 c219480 9e9de90 4aa28d5 c219480 ce729c5 4aa28d5 c219480 56b5571 c219480 ce729c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import streamlit as st
from streamlit_js_eval import streamlit_js_eval
from azure.storage.blob import BlobServiceClient
from azure.cosmos import CosmosClient, exceptions
from PyPDF2 import PdfReader
import io
import openai
import json
import os
import uuid
import time
import calendar
import re
openai.api_key = os.getenv("OPENAI_API_KEY")
openai.api_base = "https://tensora-oai-france.openai.azure.com/"
openai.api_type = "azure"
openai.api_version = "2023-12-01-preview"
connection_string = os.getenv("CONNECTION")
blob_service_client = BlobServiceClient.from_connection_string(connection_string)
def upload_blob(pdf_name, json_data, pdf_data_jobdescription,pdf_data_cvs, pre_generated_bool, custom_questions):
try:
container_name = "jobdescriptions"
# json_blob_name = f"{pdf_name}_jsondata.json"
pdf_blob_name_jobdescription = f"{pdf_name}.pdf"
container_client = blob_service_client.get_container_client(container_name)
# json_blob_client = container_client.get_blob_client(json_blob_name)
# json_blob_client.upload_blob(json_data.encode('utf-8'), overwrite=True)
pdf_blob_client = container_client.get_blob_client(pdf_blob_name_jobdescription)
pdf_blob_client.upload_blob(pdf_data_jobdescription, overwrite=True)
upload_job_db_item(pdf_name,len(pdf_data_cvs),json.loads(json_data),pre_generated_bool, custom_questions)
if pre_generated_bool:
for i,question in enumerate(custom_questions):
question_nr_for_id = i+1
question_id = pdf_name + "-question-nr-" + str(question_nr_for_id)+str(calendar.timegm(time.gmtime()))
upload_question_db_item(question_id, pdf_name, question,st.session_state["pdf_data_jobdescription_string"])
links = []
names = []
for i,cv in enumerate(pdf_data_cvs):
cv_nr_for_id = i+1
cv_session_state_string = "cv-"+str(cv_nr_for_id)
session_state_name = st.session_state[cv_session_state_string]
names.append(session_state_name)
cv_id = pdf_name + "-cv-nr-" + str(cv_nr_for_id)+str(calendar.timegm(time.gmtime()))
upload_db_item(session_state_name, json.loads(json_data), pdf_name, cv_id)
pdf_blob_name_cv = f"{cv_id}.pdf"
pdf_blob_client = container_client.get_blob_client(pdf_blob_name_cv)
pdf_blob_client.upload_blob(pdf_data_cvs[i], overwrite=True)
links.append("https://tensora.ai/workgenius/cv-evaluation2/?job="+cv_id)
st.success('Data and PDF files have been successfully uploaded. The link to the chatbot for the potential candidate is the following: ')
for i,link in enumerate(links):
st.write("Link for the candidate "+names[i]+": ")
st.write(link)
return True
except Exception as e:
print(f"Fehler beim Hochladen der Daten: {str(e)}")
return False
def upload_job_db_item(id, number_of_applicants, data, pre_generated_bool, custom_questions):
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("JobData")
job_item = {
"id": id,
'partitionKey' : 'wg-job-data-v1',
"title": data["title"],
"number_of_applicants": number_of_applicants,
"every_interview_conducted": False,
"evaluation_email": data["email"],
"question_one": data["question_one"],
"question_two": data["question_two"],
"question_three": data["question_three"],
"pre_generated": pre_generated_bool,
"custom_questions": custom_questions
}
try:
# Fügen Sie das Element in den Container ein
container.create_item(body=job_item)
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Job Data")
except exceptions.CosmosHttpResponseError as e:
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}")
except Exception as e:
print(f"Allgemeiner Fehler: {str(e)}")
def upload_db_item(name, data, job_description_id, cv_id):
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("Items")
candidate_item = {
"id": cv_id,
'partitionKey' : 'wg-candidate-data-v1',
"name": name,
"title": data["title"],
"interview_conducted": False,
"ai_summary": "",
"evaluation_email": data["email"],
"question_one": data["question_one"],
"question_two": data["question_two"],
"question_three": data["question_three"],
"job_description_id": job_description_id,
}
try:
# Fügen Sie das Element in den Container ein
container.create_item(body=candidate_item)
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Items(candidate Data)")
except exceptions.CosmosHttpResponseError as e:
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}")
except Exception as e:
print(f"Allgemeiner Fehler: {str(e)}")
def upload_question_db_item(id, job_id, question, job_content):
endpoint = "https://wg-candidate-data.documents.azure.com:443/"
key = os.getenv("CONNECTION_DB")
client = CosmosClient(endpoint, key)
database = client.get_database_client("ToDoList")
container = database.get_container_client("Questions")
question_item = {
"id": id,
"partitionKey" : "wg-question-data-v1",
"job_id": job_id,
"question_content": question,
"job_description": job_content,
}
try:
# Fügen Sie das Element in den Container ein
container.create_item(body=question_item)
print("Eintrag erfolgreich in die Cosmos DB eingefügt. Container: Questions(Question Data)")
except exceptions.CosmosHttpResponseError as e:
print(f"Fehler beim Schreiben in die Cosmos DB: {str(e)}")
except Exception as e:
print(f"Allgemeiner Fehler: {str(e)}")
st.markdown(
"""
<style>
[data-testid=column]{
text-align: center;
display: flex;
align-items: center;
justify-content: center;
}
</style>
""",
unsafe_allow_html=True,
)
col1, col2 = st.columns([2, 1])
if "ai_questions" not in st.session_state:
st.session_state["ai_questions"] = None
if "pdf_data_cvs" not in st.session_state:
st.session_state["pdf_data_cvs"] = None
if "pdf_data_cvs_string" not in st.session_state:
st.session_state["pdf_data_cvs_string"] = None
if "pdf_data_cvs_names" not in st.session_state:
st.session_state["pdf_data_cvs_names"] = []
if "pdf_data_jobdescription" not in st.session_state:
st.session_state["pdf_data_jobdescription"] = None
if "pdf_data_jobdescription_string" not in st.session_state:
st.session_state["pdf_data_jobdescription_string"] = None
if "final_question_string" not in st.session_state:
st.session_state["final_question_string"] = []
def adjust_numbering(lst):
return [f"{i + 1}. {item.split('. ', 1)[1]}" for i, item in enumerate(lst)]
with open("sys_prompt_frontend.txt") as f:
sys_prompt = f.read()
col1.title("Job description upload")
col2.image("https://www.workgenius.com/wp-content/uploads/2023/03/WorkGenius_navy-1.svg")
st.write("Please upload the job description and resume(s) as PDF and enter the job title for the position. To receive the evaluation of the potential candidate(s), please provide your email address.")
upload_success = True
#This container represents the form
with st.container():
#Form section for the files, names, title and mail
uploaded_file_jobdescription = st.file_uploader("Upload the job description:", type=["pdf"], key="job")
job_title = st.text_input("Enter the job title:", key="title")
email = st.text_input("Enter the email:" , key="mail")
uploaded_file_cvs = st.file_uploader("Upload the resume(s):", type=["pdf"],accept_multiple_files=True, key="cvs")
for i,cv in enumerate(st.session_state["cvs"]):
st.text_input(label="Enter the name of the "+str(i+1)+". CV (File: "+cv.name+")", value=cv.name,key="cv-"+str(i+1))
#Form section for the interview mode (pre generated or not) and additional questions
if len(job_title) > 0 and len(email) > 0 and uploaded_file_jobdescription and len(uploaded_file_cvs)>0:
st.write("Activate the toggle to generate and select the questions in advance. Otherwise the questions will be generated automatically during the interview.")
if not st.session_state["pdf_data_cvs"] and not st.session_state["pdf_data_cvs_string"] and not st.session_state["pdf_data_jobdescription"] and not st.session_state["pdf_data_jobdescription_string"]:
pdf_data_jobdescription = uploaded_file_jobdescription.read()
pdf_data_jobdescription_string = ""
pdf_reader_job = PdfReader(io.BytesIO(pdf_data_jobdescription))
for page_num in range(len(pdf_reader_job.pages)):
page = pdf_reader_job.pages[page_num]
pdf_data_jobdescription_string += page.extract_text()
pdf_data_cvs = []
pdf_data_cvs_string = ""
for i,cv in enumerate(st.session_state["cvs"]):
print(cv.name)
st.session_state["pdf_data_cvs_names"].append(cv.name)
# print(cv.name)
# print(cv.size)
cv_data_bytes = cv.read()
# print(len(cv_data_bytes))
pdf_data_cvs.append(cv_data_bytes)
pdf_reader_cvs = PdfReader(io.BytesIO(cv_data_bytes))
pdf_data_cvs_string += "CV "+str(i+1)+": "
for page_num in range(len(pdf_reader_cvs.pages)):
page = pdf_reader_cvs.pages[page_num]
pdf_data_cvs_string += page.extract_text()
pdf_data_cvs_string += "\n"
st.session_state["pdf_data_cvs"] = pdf_data_cvs
st.session_state["pdf_data_cvs_string"] = pdf_data_cvs_string
st.session_state["pdf_data_jobdescription"] = pdf_data_jobdescription
st.session_state["pdf_data_jobdescription_string"] = pdf_data_jobdescription_string
if st.session_state["pdf_data_cvs"]:
pdf_data_cvs_string = ""
initial_cv_length = len(st.session_state["pdf_data_cvs"])
for i,cv in enumerate(st.session_state["cvs"]):
if cv.name not in st.session_state["pdf_data_cvs_names"]:
st.session_state["pdf_data_cvs_names"].append(cv.name)
print("At second:"+cv.name)
cv_data_bytes = cv.read()
st.session_state["pdf_data_cvs"].append(cv_data_bytes)
pdf_reader_cvs = PdfReader(io.BytesIO(cv_data_bytes))
pdf_data_cvs_string += "CV "+str(i+1+initial_cv_length)+": "
for page_num in range(len(pdf_reader_cvs.pages)):
page = pdf_reader_cvs.pages[page_num]
pdf_data_cvs_string += page.extract_text()
pdf_data_cvs_string += "\n"
st.session_state["pdf_data_cvs_string"] += pdf_data_cvs_string
for i,name in enumerate(st.session_state["pdf_data_cvs_names"]):
# print(name)
found = False
for j,cv in enumerate(st.session_state["cvs"]):
# print(cv.name)
if name == cv.name:
found = True
if not found:
print("gelöscht: "+name)
del st.session_state["pdf_data_cvs"][i]
del st.session_state["pdf_data_cvs_names"][i]
pre_generate = st.toggle("Activate to pre generate questions", key="pre_toggle")
if pre_generate:
system = sys_prompt.format(job=st.session_state["pdf_data_jobdescription_string"], resume=st.session_state["pdf_data_cvs_string"], n=15)
if not st.session_state["ai_questions"]:
try:
# st.write("The questions are generated. This may take a short moment...")
st.info("The questions are generated. This may take a short moment.", icon="ℹ️")
with st.spinner("Loading..."):
res = openai.ChatCompletion.create(
engine="gpt-4-1106",
temperature=0.2,
messages=[
{
"role": "system",
"content": system,
},
],
)
st.session_state["ai_questions"] = [item for item in res.choices[0]["message"]["content"].split("\n") if len(item) > 0]
for i,q in enumerate(res.choices[0]["message"]["content"].split("\n")):
st.session_state["disable_row_"+str(i)] = False
st.rerun()
except Exception as e:
print(f"Fehler beim generieren der Fragen: {str(e)}")
st.error("An error has occurred. Please reload the page or contact the admin.", icon="🚨")
else:
if len(st.session_state["final_question_string"]) <= 0:
for i,question in enumerate(st.session_state["ai_questions"]):
cols = st.columns([5,1])
with cols[1]:
# if st.button("Accept",use_container_width=True,key="btn_accept_row_"+str(i)):
# print("accept")
# pattern = re.compile(r"^[1-9][0-9]?\.")
# questions_length = len(st.session_state["final_question_string"])
# question_from_text_area = st.session_state["text_area_"+str(i)]
# question_to_append = str(questions_length+1)+"."+re.sub(pattern, "", question_from_text_area)
# st.session_state["final_question_string"].append(question_to_append)
# st.session_state["disable_row_"+str(i)] = True
# st.rerun()
if st.button("Delete",use_container_width=True,key="btn_del_row_"+str(i)):
print("delete")
st.session_state["ai_questions"].remove(question)
st.rerun()
with cols[0]:
st.text_area(label="Question "+str(i+1)+":",value=question,label_visibility="collapsed",key="text_area_"+str(i),disabled=st.session_state["disable_row_"+str(i)])
st.write("If you are satisfied with the questions, then accept them. You can still sort them afterwards.")
if st.button("Accept all questions",use_container_width=True,key="accept_all_questions"):
print("accept all")
for i,question in enumerate(st.session_state["ai_questions"]):
print("accept")
pattern = re.compile(r"^[1-9][0-9]?\.")
questions_length = len(st.session_state["final_question_string"])
question_from_text_area = st.session_state["text_area_"+str(i)]
question_to_append = str(questions_length+1)+"."+re.sub(pattern, "", question_from_text_area)
st.session_state["final_question_string"].append(question_to_append)
st.session_state["disable_row_"+str(i)] = True
st.rerun()
for i,final_q in enumerate(st.session_state["final_question_string"]):
cols_final = st.columns([5,1])
with cols_final[1]:
if st.button("Up",use_container_width=True,key="btn_up_row_"+str(i),disabled=True if i == 0 else False):
if i > 0:
# Tausche das aktuelle Element mit dem vorherigen Element
st.session_state.final_question_string[i], st.session_state.final_question_string[i - 1] = \
st.session_state.final_question_string[i - 1], st.session_state.final_question_string[i]
st.session_state.final_question_string = adjust_numbering(st.session_state.final_question_string)
st.rerun()
if st.button("Down",use_container_width=True,key="btn_down_row_"+str(i), disabled=True if i == len(st.session_state["final_question_string"])-1 else False):
if i < len(st.session_state.final_question_string) - 1:
# Tausche das aktuelle Element mit dem nächsten Element
st.session_state.final_question_string[i], st.session_state.final_question_string[i + 1] = \
st.session_state.final_question_string[i + 1], st.session_state.final_question_string[i]
st.session_state.final_question_string = adjust_numbering(st.session_state.final_question_string)
st.rerun()
with cols_final[0]:
st.write(final_q)
else:
with st.expander("Enter up to three predefined questions if needed. Otherwise leave it blank:"):
question_one = st.text_input("Enter the first question:")
question_two = st.text_input("Enter the second question:")
question_three = st.text_input("Enter the third question:")
#Form section for Submit and Clear
col_submit_btn, col_empty, col_clear_btn = st.columns([1,4, 1])
if col_clear_btn.button("Clear " ,use_container_width=True):
streamlit_js_eval(js_expressions="parent.window.location.reload()")
#Code to handle the input
if col_submit_btn.button("Submit", use_container_width=True):
if len(job_title) > 0 and len(email) > 0 and uploaded_file_jobdescription and len(uploaded_file_cvs)>0:
data = {
"title": job_title,
"email": email,
"question_one": "",
"question_two": "",
"question_three": "",
}
if not st.session_state["pre_toggle"]:
if question_one:
data["question_one"] = question_one
if question_two:
data["question_two"] = question_two
if question_three:
data["question_three"] = question_three
json_data = json.dumps(data, ensure_ascii=False)
# Eine zufällige UUID generieren
random_uuid = uuid.uuid4()
# Die UUID als String darstellen
uuid_string = str(random_uuid)
pdf_name = uuid_string
print(st.session_state["final_question_string"])
# pdf_data_cv = uploaded_file_cv.read()
print(len(st.session_state["pdf_data_cvs"]))
print(st.session_state["pdf_data_cvs_names"])
upload_success = upload_blob(pdf_name, json_data, st.session_state["pdf_data_jobdescription"],st.session_state["pdf_data_cvs"],st.session_state["pre_toggle"],st.session_state["final_question_string"])
else:
st.write("Please fill out both fields and upload a PDF file.")
if not upload_success:
st.error('An error has occurred. Please contact the administrator. Sorry for the inconvenience.', icon="🚨") |