|
|
|
|
|
import simplestart as ss |
|
import pandas as pd |
|
|
|
ss.md(''' |
|
## Feature Analysis |
|
''') |
|
|
|
ss.space() |
|
|
|
ss.md("#### 1. Scatter Matrix of Features") |
|
ss.space() |
|
ss.image("./images/feature01.png", width=600, height=500) |
|
|
|
ss.space() |
|
|
|
ss.md(''' |
|
This image is from: |
|
[VuNus 【Basics of Machine Learning】1.7 Iris Flower Classification](https://blog.csdn.net/qq_47809408/article/details/124632290) |
|
''') |
|
|
|
ss.space() |
|
ss.md("#### 2. Feature Exploration") |
|
import pandas as pd |
|
from bokeh.plotting import figure, show |
|
from bokeh.models import ColumnDataSource |
|
from bokeh.transform import factor_cmap |
|
from bokeh.embed import file_html |
|
from bokeh.resources import CDN |
|
from bokeh.palettes import Category10 |
|
|
|
|
|
data = pd.read_csv("./data/iris.csv") |
|
|
|
|
|
p = figure(title="Iris Dataset Scatter Plot", x_axis_label='Petal Length (cm)', y_axis_label='Petal Width (cm)', |
|
tools="pan,wheel_zoom,box_zoom,reset,hover,save", width=800, height=600) |
|
|
|
|
|
source = ColumnDataSource(data) |
|
|
|
|
|
species_list = data['species'].unique().tolist() |
|
p.circle(x='petal_length', y='petal_width', source=source, size=10, |
|
color=factor_cmap('species', palette=Category10[3], factors=species_list), legend_field='species') |
|
|
|
|
|
p.legend.title = "Species" |
|
p.legend.location = "top_left" |
|
|
|
|
|
html_output = file_html(p, CDN, "Iris Dataset Scatter Plot") |
|
|
|
|
|
ss.htmlview(html_output) |
|
|