deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The COCO-style evaluator.
The following snippet demonstrates the use of interfaces:
evaluator = COCOEvaluator(...)
for _ in range(num_evals):
for _ in range(num_batches_per_eval):
predictions, groundtruth = predictor.predict(...) # pop a batch.
evaluator.update(predictions, groundtruths) # aggregate internal stats.
evaluator.evaluate() # finish one full eval.
See also: https://github.com/cocodataset/cocoapi/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import atexit
import copy
import tempfile
from absl import logging
import numpy as np
from pycocotools import cocoeval
import six
import tensorflow as tf, tf_keras
from official.legacy.detection.evaluation import coco_utils
from official.legacy.detection.utils import class_utils
class OlnCOCOevalWrapper(cocoeval.COCOeval):
"""COCOeval wrapper class.
Rewritten based on cocoapi: (pycocotools/cocoeval.py)
This class wraps COCOEVAL API object, which provides the following additional
functionalities:
1. summarze 'all', 'seen', and 'novel' split output print-out, e.g., AR at
different K proposals, AR and AP resutls for 'seen' and 'novel' class
splits.
"""
def __init__(self, coco_gt, coco_dt, iou_type='box'):
super(OlnCOCOevalWrapper, self).__init__(
cocoGt=coco_gt, cocoDt=coco_dt, iouType=iou_type)
def summarize(self):
"""Compute and display summary metrics for evaluation results.
Delta to the standard cocoapi function:
More Averate Recall metrics are produced with different top-K proposals.
Note this functin can *only* be applied on the default parameter
setting.
Raises:
Exception: Please run accumulate() first.
"""
def _summarize(ap=1, iou_thr=None, area_rng='all', max_dets=100):
p = self.params
i_str = (' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = '
'{:0.3f}')
title_str = 'Average Precision' if ap == 1 else 'Average Recall'
type_str = '(AP)' if ap == 1 else '(AR)'
iou_str = '{:0.2f}:{:0.2f}'.format(
p.iouThrs[0],
p.iouThrs[-1]) if iou_thr is None else '{:0.2f}'.format(iou_thr)
aind = [i for i, a_rng in enumerate(p.areaRngLbl) if a_rng == area_rng]
mind = [i for i, m_det in enumerate(p.maxDets) if m_det == max_dets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval['precision']
# IoU
if iou_thr is not None:
t = np.where(iou_thr == p.iouThrs)[0]
s = s[t]
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval['recall']
if iou_thr is not None:
t = np.where(iou_thr == p.iouThrs)[0]
s = s[t]
s = s[:, :, aind, mind]
if not (s[s > -1]).any():
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
print(
i_str.format(title_str, type_str, iou_str, area_rng, max_dets,
mean_s))
return mean_s
def _summarize_dets():
stats = np.zeros((14,))
stats[0] = _summarize(1)
stats[1] = _summarize(
1,
iou_thr=.5,
)
stats[2] = _summarize(
1,
iou_thr=.75,
)
stats[3] = _summarize(
1,
area_rng='small',
)
stats[4] = _summarize(
1,
area_rng='medium',
)
stats[5] = _summarize(
1,
area_rng='large',
)
stats[6] = _summarize(0, max_dets=self.params.maxDets[0]) # 10
stats[7] = _summarize(0, max_dets=self.params.maxDets[1]) # 20
stats[8] = _summarize(0, max_dets=self.params.maxDets[2]) # 50
stats[9] = _summarize(0, max_dets=self.params.maxDets[3]) # 100
stats[10] = _summarize(0, max_dets=self.params.maxDets[4]) # 200
stats[11] = _summarize(0, area_rng='small', max_dets=10)
stats[12] = _summarize(0, area_rng='medium', max_dets=10)
stats[13] = _summarize(0, area_rng='large', max_dets=10)
return stats
if not self.eval:
raise Exception('Please run accumulate() first')
summarize = _summarize_dets
self.stats = summarize()
class OlnCOCOevalXclassWrapper(OlnCOCOevalWrapper):
"""COCOeval wrapper class.
Rewritten based on cocoapi: (pycocotools/cocoeval.py)
Delta to the standard cocoapi:
Detections that hit the 'seen' class objects are ignored in top-K proposals.
This class wraps COCOEVAL API object, which provides the following additional
functionalities:
1. Include ignore-class split (e.g., 'voc' or 'nonvoc').
2. Do not count (or ignore) box proposals hitting ignore-class when
evaluating Average Recall at top-K proposals.
"""
def __init__(self, coco_gt, coco_dt, iou_type='box'):
super(OlnCOCOevalXclassWrapper, self).__init__(
coco_gt=coco_gt, coco_dt=coco_dt, iou_type=iou_type)
def evaluateImg(self, img_id, cat_id, a_rng, max_det):
p = self.params
if p.useCats:
gt = self._gts[img_id, cat_id]
dt = self._dts[img_id, cat_id]
else:
gt, dt = [], []
for c_id in p.catIds:
gt.extend(self._gts[img_id, c_id])
dt.extend(self._dts[img_id, c_id])
if not gt and not dt:
return None
for g in gt:
if g['ignore'] or (g['area'] < a_rng[0] or g['area'] > a_rng[1]):
g['_ignore'] = 1
else:
g['_ignore'] = 0
# Class manipulation: ignore the 'ignored_split'.
if 'ignored_split' in g and g['ignored_split'] == 1:
g['_ignore'] = 1
# sort dt highest score first, sort gt ignore last
gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
gt = [gt[i] for i in gtind]
dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in dtind[0:max_det]]
iscrowd = [int(o['iscrowd']) for o in gt]
# load computed ious
# ious = self.ious[img_id, cat_id][:, gtind] if len(
# self.ious[img_id, cat_id]) > 0 else self.ious[img_id, cat_id]
if self.ious[img_id, cat_id].any():
ious = self.ious[img_id, cat_id][:, gtind]
else:
ious = self.ious[img_id, cat_id]
tt = len(p.iouThrs)
gg = len(gt)
dd = len(dt)
gtm = np.zeros((tt, gg))
dtm = np.zeros((tt, dd))
gt_ig = np.array([g['_ignore'] for g in gt])
dt_ig = np.zeros((tt, dd))
# indicator of whether the gt object class is of ignored_split or not.
gt_ig_split = np.array([g['ignored_split'] for g in gt])
dt_ig_split = np.zeros((dd))
if ious.any():
for tind, t in enumerate(p.iouThrs):
for dind, d in enumerate(dt):
# information about best match so far (m=-1 -> unmatched)
iou = min([t, 1 - 1e-10])
m = -1
for gind, g in enumerate(gt):
# if this gt already matched, and not a crowd, continue
if gtm[tind, gind] > 0 and not iscrowd[gind]:
continue
# if dt matched to reg gt, and on ignore gt, stop
if m > -1 and gt_ig[m] == 0 and gt_ig[gind] == 1:
break
# continue to next gt unless better match made
if ious[dind, gind] < iou:
continue
# if match successful and best so far, store appropriately
iou = ious[dind, gind]
m = gind
# if match made store id of match for both dt and gt
if m == -1:
continue
dt_ig[tind, dind] = gt_ig[m]
dtm[tind, dind] = gt[m]['id']
gtm[tind, m] = d['id']
# Activate to ignore the seen-class detections.
if tind == 0: # Register just only once: tind > 0 is also fine.
dt_ig_split[dind] = gt_ig_split[m]
# set unmatched detections outside of area range to ignore
a = np.array([d['area'] < a_rng[0] or d['area'] > a_rng[1] for d in dt
]).reshape((1, len(dt)))
dt_ig = np.logical_or(dt_ig, np.logical_and(dtm == 0, np.repeat(a, tt, 0)))
# Activate to ignore the seen-class detections.
# Take only eval_split (eg, nonvoc) and ignore seen_split (eg, voc).
if dt_ig_split.sum() > 0:
dtm = dtm[:, dt_ig_split == 0]
dt_ig = dt_ig[:, dt_ig_split == 0]
len_dt = min(max_det, len(dt))
dt = [dt[i] for i in range(len_dt) if dt_ig_split[i] == 0]
# store results for given image and category
return {
'image_id': img_id,
'category_id': cat_id,
'aRng': a_rng,
'maxDet': max_det,
'dtIds': [d['id'] for d in dt],
'gtIds': [g['id'] for g in gt],
'dtMatches': dtm,
'gtMatches': gtm,
'dtScores': [d['score'] for d in dt],
'gtIgnore': gt_ig,
'dtIgnore': dt_ig,
}
class MetricWrapper(object):
"""Metric Wrapper of the COCO evaluator."""
# This is only a wrapper for COCO metric and works on for numpy array. So it
# doesn't inherit from tf_keras.layers.Layer or tf_keras.metrics.Metric.
def __init__(self, evaluator):
self._evaluator = evaluator
def update_state(self, y_true, y_pred):
"""Update internal states."""
labels = tf.nest.map_structure(lambda x: x.numpy(), y_true)
outputs = tf.nest.map_structure(lambda x: x.numpy(), y_pred)
groundtruths = {}
predictions = {}
for key, val in outputs.items():
if isinstance(val, tuple):
val = np.concatenate(val)
predictions[key] = val
for key, val in labels.items():
if isinstance(val, tuple):
val = np.concatenate(val)
groundtruths[key] = val
self._evaluator.update(predictions, groundtruths)
def result(self):
return self._evaluator.evaluate()
def reset_states(self):
return self._evaluator.reset()
class COCOEvaluator(object):
"""COCO evaluation metric class."""
def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True):
"""Constructs COCO evaluation class.
The class provides the interface to metrics_fn in TPUEstimator. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the groundtruths and runs COCO evaluation.
Args:
annotation_file: a JSON file that stores annotations of the eval dataset.
If `annotation_file` is None, groundtruth annotations will be loaded
from the dataloader.
include_mask: a boolean to indicate whether or not to include the mask
eval.
need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
to absolute values (`image_info` is needed in this case).
"""
if annotation_file:
if annotation_file.startswith('gs://'):
_, local_val_json = tempfile.mkstemp(suffix='.json')
tf.io.gfile.remove(local_val_json)
tf.io.gfile.copy(annotation_file, local_val_json)
atexit.register(tf.io.gfile.remove, local_val_json)
else:
local_val_json = annotation_file
self._coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if include_mask else 'box'),
annotation_file=local_val_json)
self._annotation_file = annotation_file
self._include_mask = include_mask
self._metric_names = [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax1', 'ARmax10',
'ARmax100', 'ARs', 'ARm', 'ARl'
]
self._required_prediction_fields = [
'source_id', 'num_detections', 'detection_classes', 'detection_scores',
'detection_boxes'
]
self._need_rescale_bboxes = need_rescale_bboxes
if self._need_rescale_bboxes:
self._required_prediction_fields.append('image_info')
self._required_groundtruth_fields = [
'source_id', 'height', 'width', 'classes', 'boxes'
]
if self._include_mask:
mask_metric_names = ['mask_' + x for x in self._metric_names]
self._metric_names.extend(mask_metric_names)
self._required_prediction_fields.extend(['detection_masks'])
self._required_groundtruth_fields.extend(['masks'])
self.reset()
def reset(self):
"""Resets internal states for a fresh run."""
self._predictions = {}
if not self._annotation_file:
self._groundtruths = {}
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
logging.info('Thre is no annotation_file in COCOEvaluator.')
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
logging.info('Using annotation file: %s', self._annotation_file)
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
coco_eval.params.imgIds = image_ids
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
if self._include_mask:
mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
mcoco_eval.params.imgIds = image_ids
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
mask_coco_metrics = mcoco_eval.stats
if self._include_mask:
metrics = np.hstack((coco_metrics, mask_coco_metrics))
else:
metrics = coco_metrics
# Cleans up the internal variables in order for a fresh eval next time.
self.reset()
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
return metrics_dict
def _process_predictions(self, predictions):
image_scale = np.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2))
predictions['detection_boxes'] = (
predictions['detection_boxes'].astype(np.float32))
predictions['detection_boxes'] /= image_scale
if 'detection_outer_boxes' in predictions:
predictions['detection_outer_boxes'] = (
predictions['detection_outer_boxes'].astype(np.float32))
predictions['detection_outer_boxes'] /= image_scale
def update(self, predictions, groundtruths=None):
"""Update and aggregate detection results and groundtruth data.
Args:
predictions: a dictionary of numpy arrays including the fields below. See
different parsers under `../dataloader` for more details.
Required fields:
- source_id: a numpy array of int or string of shape [batch_size].
- image_info [if `need_rescale_bboxes` is True]: a numpy array of
float of shape [batch_size, 4, 2].
- num_detections: a numpy array of int of shape [batch_size].
- detection_boxes: a numpy array of float of shape [batch_size, K, 4].
- detection_classes: a numpy array of int of shape [batch_size, K].
- detection_scores: a numpy array of float of shape [batch_size, K].
Optional fields:
- detection_masks: a numpy array of float of shape [batch_size, K,
mask_height, mask_width].
groundtruths: a dictionary of numpy arrays including the fields below. See
also different parsers under `../dataloader` for more details.
Required fields:
- source_id: a numpy array of int or string of shape [batch_size].
- height: a numpy array of int of shape [batch_size].
- width: a numpy array of int of shape [batch_size].
- num_detections: a numpy array of int of shape [batch_size].
- boxes: a numpy array of float of shape [batch_size, K, 4].
- classes: a numpy array of int of shape [batch_size, K].
Optional fields:
- is_crowds: a numpy array of int of shape [batch_size, K]. If the
field is absent, it is assumed that this instance is not crowd.
- areas: a numy array of float of shape [batch_size, K]. If the field
is absent, the area is calculated using either boxes or masks
depending on which one is available.
- masks: a numpy array of float of shape [batch_size, K, mask_height,
mask_width],
Raises:
ValueError: if the required prediction or groundtruth fields are not
present in the incoming `predictions` or `groundtruths`.
"""
for k in self._required_prediction_fields:
if k not in predictions:
raise ValueError(
'Missing the required key `{}` in predictions!'.format(k))
if self._need_rescale_bboxes:
self._process_predictions(predictions)
for k, v in six.iteritems(predictions):
if k not in self._predictions:
self._predictions[k] = [v]
else:
self._predictions[k].append(v)
if not self._annotation_file:
assert groundtruths
for k in self._required_groundtruth_fields:
if k not in groundtruths:
raise ValueError(
'Missing the required key `{}` in groundtruths!'.format(k))
for k, v in six.iteritems(groundtruths):
if k not in self._groundtruths:
self._groundtruths[k] = [v]
else:
self._groundtruths[k].append(v)
class OlnXclassEvaluator(COCOEvaluator):
"""COCO evaluation metric class."""
def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True,
use_category=True, seen_class='all'):
"""Constructs COCO evaluation class.
The class provides the interface to metrics_fn in TPUEstimator. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the groundtruths and runs COCO evaluation.
Args:
annotation_file: a JSON file that stores annotations of the eval dataset.
If `annotation_file` is None, groundtruth annotations will be loaded
from the dataloader.
include_mask: a boolean to indicate whether or not to include the mask
eval.
need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
to absolute values (`image_info` is needed in this case).
use_category: if `False`, treat all object in all classes in one
foreground category.
seen_class: 'all' or 'voc' or 'nonvoc'
"""
super(OlnXclassEvaluator, self).__init__(
annotation_file=annotation_file,
include_mask=include_mask,
need_rescale_bboxes=need_rescale_bboxes)
self._use_category = use_category
self._seen_class = seen_class
self._seen_class_ids = class_utils.coco_split_class_ids(seen_class)
self._metric_names = [
'AP', 'AP50', 'AP75',
'APs', 'APm', 'APl',
'ARmax10', 'ARmax20', 'ARmax50', 'ARmax100', 'ARmax200',
'ARmax10s', 'ARmax10m', 'ARmax10l'
]
if self._seen_class != 'all':
self._metric_names.extend([
'AP_seen', 'AP50_seen', 'AP75_seen',
'APs_seen', 'APm_seen', 'APl_seen',
'ARmax10_seen', 'ARmax20_seen', 'ARmax50_seen',
'ARmax100_seen', 'ARmax200_seen',
'ARmax10s_seen', 'ARmax10m_seen', 'ARmax10l_seen',
'AP_novel', 'AP50_novel', 'AP75_novel',
'APs_novel', 'APm_novel', 'APl_novel',
'ARmax10_novel', 'ARmax20_novel', 'ARmax50_novel',
'ARmax100_novel', 'ARmax200_novel',
'ARmax10s_novel', 'ARmax10m_novel', 'ARmax10l_novel',
])
if self._include_mask:
mask_metric_names = ['mask_' + x for x in self._metric_names]
self._metric_names.extend(mask_metric_names)
self._required_prediction_fields.extend(['detection_masks'])
self._required_groundtruth_fields.extend(['masks'])
self.reset()
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
logging.info('Thre is no annotation_file in COCOEvaluator.')
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
logging.info('Using annotation file: %s', self._annotation_file)
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
# Class manipulation: 'all' split samples -> ignored_split = 0.
for idx, ann in enumerate(coco_gt.dataset['annotations']):
coco_gt.dataset['annotations'][idx]['ignored_split'] = 0
coco_eval = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt, coco_dt, iou_type='bbox')
coco_eval.params.maxDets = [10, 20, 50, 100, 200]
coco_eval.params.imgIds = image_ids
coco_eval.params.useCats = 0 if not self._use_category else 1
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
if self._include_mask:
mcoco_eval = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt, coco_dt, iou_type='segm')
mcoco_eval.params.maxDets = [10, 20, 50, 100, 200]
mcoco_eval.params.imgIds = image_ids
mcoco_eval.params.useCats = 0 if not self._use_category else 1
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
mask_coco_metrics = mcoco_eval.stats
if self._include_mask:
metrics = np.hstack((coco_metrics, mask_coco_metrics))
else:
metrics = coco_metrics
if self._seen_class != 'all':
# for seen class eval, samples of novel_class are ignored.
coco_gt_seen = copy.deepcopy(coco_gt)
for idx, ann in enumerate(coco_gt.dataset['annotations']):
if ann['category_id'] in self._seen_class_ids:
coco_gt_seen.dataset['annotations'][idx]['ignored_split'] = 0
else:
coco_gt_seen.dataset['annotations'][idx]['ignored_split'] = 1
coco_eval_seen = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt_seen, coco_dt, iou_type='bbox')
coco_eval_seen.params.maxDets = [10, 20, 50, 100, 200]
coco_eval_seen.params.imgIds = image_ids
coco_eval_seen.params.useCats = 0 if not self._use_category else 1
coco_eval_seen.evaluate()
coco_eval_seen.accumulate()
coco_eval_seen.summarize()
coco_metrics_seen = coco_eval_seen.stats
if self._include_mask:
mcoco_eval_seen = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt_seen, coco_dt, iou_type='segm')
mcoco_eval_seen.params.maxDets = [10, 20, 50, 100, 200]
mcoco_eval_seen.params.imgIds = image_ids
mcoco_eval_seen.params.useCats = 0 if not self._use_category else 1
mcoco_eval_seen.evaluate()
mcoco_eval_seen.accumulate()
mcoco_eval_seen.summarize()
mask_coco_metrics_seen = mcoco_eval_seen.stats
# for novel class eval, samples of seen_class are ignored.
coco_gt_novel = copy.deepcopy(coco_gt)
for idx, ann in enumerate(coco_gt.dataset['annotations']):
if ann['category_id'] in self._seen_class_ids:
coco_gt_novel.dataset['annotations'][idx]['ignored_split'] = 1
else:
coco_gt_novel.dataset['annotations'][idx]['ignored_split'] = 0
coco_eval_novel = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt_novel, coco_dt, iou_type='bbox')
coco_eval_novel.params.maxDets = [10, 20, 50, 100, 200]
coco_eval_novel.params.imgIds = image_ids
coco_eval_novel.params.useCats = 0 if not self._use_category else 1
coco_eval_novel.evaluate()
coco_eval_novel.accumulate()
coco_eval_novel.summarize()
coco_metrics_novel = coco_eval_novel.stats
if self._include_mask:
mcoco_eval_novel = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt_novel, coco_dt, iou_type='segm')
mcoco_eval_novel.params.maxDets = [10, 20, 50, 100, 200]
mcoco_eval_novel.params.imgIds = image_ids
mcoco_eval_novel.params.useCats = 0 if not self._use_category else 1
mcoco_eval_novel.evaluate()
mcoco_eval_novel.accumulate()
mcoco_eval_novel.summarize()
mask_coco_metrics_novel = mcoco_eval_novel.stats
# Combine all splits.
if self._include_mask:
metrics = np.hstack((
coco_metrics, coco_metrics_seen, coco_metrics_novel,
mask_coco_metrics, mask_coco_metrics_seen, mask_coco_metrics_novel))
else:
metrics = np.hstack((
coco_metrics, coco_metrics_seen, coco_metrics_novel))
# Cleans up the internal variables in order for a fresh eval next time.
self.reset()
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
return metrics_dict
class OlnXdataEvaluator(OlnXclassEvaluator):
"""COCO evaluation metric class."""
def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True,
use_category=True, seen_class='all'):
"""Constructs COCO evaluation class.
The class provides the interface to metrics_fn in TPUEstimator. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the groundtruths and runs COCO evaluation.
Args:
annotation_file: a JSON file that stores annotations of the eval dataset.
If `annotation_file` is None, groundtruth annotations will be loaded
from the dataloader.
include_mask: a boolean to indicate whether or not to include the mask
eval.
need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
to absolute values (`image_info` is needed in this case).
use_category: if `False`, treat all object in all classes in one
foreground category.
seen_class: 'all' or 'voc' or 'nonvoc'
"""
super(OlnXdataEvaluator, self).__init__(
annotation_file=annotation_file,
include_mask=include_mask,
need_rescale_bboxes=need_rescale_bboxes,
use_category=False,
seen_class='all')
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
logging.info('Thre is no annotation_file in COCOEvaluator.')
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
logging.info('Using annotation file: %s', self._annotation_file)
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
# Class manipulation: 'all' split samples -> ignored_split = 0.
for idx, _ in enumerate(coco_gt.dataset['annotations']):
coco_gt.dataset['annotations'][idx]['ignored_split'] = 0
coco_eval = cocoeval.OlnCOCOevalWrapper(coco_gt, coco_dt, iou_type='bbox')
coco_eval.params.maxDets = [10, 20, 50, 100, 200]
coco_eval.params.imgIds = image_ids
coco_eval.params.useCats = 0 if not self._use_category else 1
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
if self._include_mask:
mcoco_eval = cocoeval.OlnCOCOevalWrapper(coco_gt, coco_dt,
iou_type='segm')
mcoco_eval.params.maxDets = [10, 20, 50, 100, 200]
mcoco_eval.params.imgIds = image_ids
mcoco_eval.params.useCats = 0 if not self._use_category else 1
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
mask_coco_metrics = mcoco_eval.stats
if self._include_mask:
metrics = np.hstack((coco_metrics, mask_coco_metrics))
else:
metrics = coco_metrics
# Cleans up the internal variables in order for a fresh eval next time.
self.reset()
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
return metrics_dict
class ShapeMaskCOCOEvaluator(COCOEvaluator):
"""COCO evaluation metric class for ShapeMask."""
def __init__(self, mask_eval_class, **kwargs):
"""Constructs COCO evaluation class.
The class provides the interface to metrics_fn in TPUEstimator. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the groundtruths and runs COCO evaluation.
Args:
mask_eval_class: the set of classes for mask evaluation.
**kwargs: other keyword arguments passed to the parent class initializer.
"""
super(ShapeMaskCOCOEvaluator, self).__init__(**kwargs)
self._mask_eval_class = mask_eval_class
self._eval_categories = class_utils.coco_split_class_ids(mask_eval_class)
if mask_eval_class != 'all':
self._metric_names = [
x.replace('mask', 'novel_mask') for x in self._metric_names
]
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
coco_eval.params.imgIds = image_ids
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
if self._include_mask:
mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
mcoco_eval.params.imgIds = image_ids
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
if self._mask_eval_class == 'all':
metrics = np.hstack((coco_metrics, mcoco_eval.stats))
else:
mask_coco_metrics = mcoco_eval.category_stats
val_catg_idx = np.isin(mcoco_eval.params.catIds, self._eval_categories)
# Gather the valid evaluation of the eval categories.
if np.any(val_catg_idx):
mean_val_metrics = []
for mid in range(len(self._metric_names) // 2):
mean_val_metrics.append(
np.nanmean(mask_coco_metrics[mid][val_catg_idx]))
mean_val_metrics = np.array(mean_val_metrics)
else:
mean_val_metrics = np.zeros(len(self._metric_names) // 2)
metrics = np.hstack((coco_metrics, mean_val_metrics))
else:
metrics = coco_metrics
# Cleans up the internal variables in order for a fresh eval next time.
self.reset()
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
return metrics_dict