Spaces:
Running
on
Zero
Running
on
Zero
A newer version of the Gradio SDK is available:
5.25.2
AutoencoderKL training example
Installing the dependencies
Before running the scripts, make sure to install the library's training dependencies:
Important
To make sure you can successfully run the latest versions of the example scripts, we highly recommend installing from source and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
Then cd in the example folder and run
pip install -r requirements.txt
And initialize an 🤗Accelerate environment with:
accelerate config
Training on CIFAR10
Please replace the validation image with your own image.
accelerate launch train_autoencoderkl.py \
--pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \
--dataset_name=cifar10 \
--image_column=img \
--validation_image images/bird.jpg images/car.jpg images/dog.jpg images/frog.jpg \
--num_train_epochs 100 \
--gradient_accumulation_steps 2 \
--learning_rate 4.5e-6 \
--lr_scheduler cosine \
--report_to wandb \
Training on ImageNet
accelerate launch train_autoencoderkl.py \
--pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \
--num_train_epochs 100 \
--gradient_accumulation_steps 2 \
--learning_rate 4.5e-6 \
--lr_scheduler cosine \
--report_to wandb \
--mixed_precision bf16 \
--train_data_dir /path/to/ImageNet/train \
--validation_image ./image.png \
--decoder_only