Spaces:
Running
on
Zero
Running
on
Zero
# AutoencoderKL training example | |
## Installing the dependencies | |
Before running the scripts, make sure to install the library's training dependencies: | |
**Important** | |
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: | |
```bash | |
git clone https://github.com/huggingface/diffusers | |
cd diffusers | |
pip install . | |
``` | |
Then cd in the example folder and run | |
```bash | |
pip install -r requirements.txt | |
``` | |
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: | |
```bash | |
accelerate config | |
``` | |
## Training on CIFAR10 | |
Please replace the validation image with your own image. | |
```bash | |
accelerate launch train_autoencoderkl.py \ | |
--pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \ | |
--dataset_name=cifar10 \ | |
--image_column=img \ | |
--validation_image images/bird.jpg images/car.jpg images/dog.jpg images/frog.jpg \ | |
--num_train_epochs 100 \ | |
--gradient_accumulation_steps 2 \ | |
--learning_rate 4.5e-6 \ | |
--lr_scheduler cosine \ | |
--report_to wandb \ | |
``` | |
## Training on ImageNet | |
```bash | |
accelerate launch train_autoencoderkl.py \ | |
--pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \ | |
--num_train_epochs 100 \ | |
--gradient_accumulation_steps 2 \ | |
--learning_rate 4.5e-6 \ | |
--lr_scheduler cosine \ | |
--report_to wandb \ | |
--mixed_precision bf16 \ | |
--train_data_dir /path/to/ImageNet/train \ | |
--validation_image ./image.png \ | |
--decoder_only | |
``` | |