Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import inspect | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel | |
from diffusers import ( | |
AutoencoderKL, | |
AutoPipelineForImage2Image, | |
FlowMatchEulerDiscreteScheduler, | |
SD3Transformer2DModel, | |
StableDiffusion3Img2ImgPipeline, | |
StableDiffusion3PAGImg2ImgPipeline, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
load_image, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import ( | |
IMAGE_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, | |
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, | |
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
) | |
from ..test_pipelines_common import ( | |
PipelineTesterMixin, | |
) | |
enable_full_determinism() | |
class StableDiffusion3PAGImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = StableDiffusion3PAGImg2ImgPipeline | |
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) - {"height", "width"} | |
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} | |
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | |
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
image_latens_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS | |
test_xformers_attention = False | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = SD3Transformer2DModel( | |
sample_size=32, | |
patch_size=1, | |
in_channels=4, | |
num_layers=2, | |
attention_head_dim=8, | |
num_attention_heads=4, | |
caption_projection_dim=32, | |
joint_attention_dim=32, | |
pooled_projection_dim=64, | |
out_channels=4, | |
) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
torch.manual_seed(0) | |
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) | |
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
block_out_channels=(4,), | |
layers_per_block=1, | |
latent_channels=4, | |
norm_num_groups=1, | |
use_quant_conv=False, | |
use_post_quant_conv=False, | |
shift_factor=0.0609, | |
scaling_factor=1.5035, | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return { | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"text_encoder_2": text_encoder_2, | |
"text_encoder_3": text_encoder_3, | |
"tokenizer": tokenizer, | |
"tokenizer_2": tokenizer_2, | |
"tokenizer_3": tokenizer_3, | |
"transformer": transformer, | |
"vae": vae, | |
} | |
def get_dummy_inputs(self, device, seed=0): | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
image = image / 2 + 0.5 | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"pag_scale": 0.7, | |
} | |
return inputs | |
def test_pag_disable_enable(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
# base pipeline (expect same output when pag is disabled) | |
pipe_sd = StableDiffusion3Img2ImgPipeline(**components) | |
pipe_sd = pipe_sd.to(device) | |
pipe_sd.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
del inputs["pag_scale"] | |
assert ( | |
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters | |
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." | |
out = pipe_sd(**inputs).images[0, -3:, -3:, -1] | |
components = self.get_dummy_components() | |
# pag disabled with pag_scale=0.0 | |
pipe_pag = self.pipeline_class(**components) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["pag_scale"] = 0.0 | |
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 | |
def test_pag_inference(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["blocks.0"]) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe_pag(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == ( | |
1, | |
32, | |
32, | |
3, | |
), f"the shape of the output image should be (1, 32, 32, 3) but got {image.shape}" | |
expected_slice = np.array( | |
[0.66063476, 0.44838923, 0.5484299, 0.7242875, 0.5970012, 0.6015729, 0.53080845, 0.52220416, 0.56397927] | |
) | |
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
self.assertLessEqual(max_diff, 1e-3) | |
class StableDiffusion3PAGImg2ImgPipelineIntegrationTests(unittest.TestCase): | |
pipeline_class = StableDiffusion3PAGImg2ImgPipeline | |
repo_id = "stabilityai/stable-diffusion-3-medium-diffusers" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs( | |
self, device, generator_device="cpu", dtype=torch.float32, seed=0, guidance_scale=7.0, pag_scale=0.7 | |
): | |
img_url = ( | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png" | |
) | |
init_image = load_image(img_url) | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
inputs = { | |
"prompt": "an astronaut in a space suit walking through a jungle", | |
"generator": generator, | |
"image": init_image, | |
"num_inference_steps": 12, | |
"strength": 0.6, | |
"guidance_scale": guidance_scale, | |
"pag_scale": pag_scale, | |
"output_type": "np", | |
} | |
return inputs | |
def test_pag_cfg(self): | |
pipeline = AutoPipelineForImage2Image.from_pretrained( | |
self.repo_id, enable_pag=True, torch_dtype=torch.float16, pag_applied_layers=["blocks.17"] | |
) | |
pipeline.enable_model_cpu_offload() | |
pipeline.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
image = pipeline(**inputs).images | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
assert image.shape == (1, 1024, 1024, 3) | |
expected_slice = np.array( | |
[ | |
0.16772461, | |
0.17626953, | |
0.18432617, | |
0.17822266, | |
0.18359375, | |
0.17626953, | |
0.17407227, | |
0.17700195, | |
0.17822266, | |
] | |
) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
), f"output is different from expected, {image_slice.flatten()}" | |
def test_pag_uncond(self): | |
pipeline = AutoPipelineForImage2Image.from_pretrained( | |
self.repo_id, enable_pag=True, torch_dtype=torch.float16, pag_applied_layers=["blocks.(4|17)"] | |
) | |
pipeline.enable_model_cpu_offload() | |
pipeline.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device, guidance_scale=0.0, pag_scale=1.8) | |
image = pipeline(**inputs).images | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
assert image.shape == (1, 1024, 1024, 3) | |
expected_slice = np.array( | |
[0.1508789, 0.16210938, 0.17138672, 0.16210938, 0.17089844, 0.16137695, 0.16235352, 0.16430664, 0.16455078] | |
) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
), f"output is different from expected, {image_slice.flatten()}" | |