Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import tempfile | |
import unittest | |
import torch | |
from diffusers import EulerDiscreteScheduler, StableDiffusionInstructPix2PixPipeline, StableDiffusionPipeline | |
from diffusers.loaders.single_file_utils import _extract_repo_id_and_weights_name | |
from diffusers.utils import load_image | |
from diffusers.utils.testing_utils import ( | |
backend_empty_cache, | |
enable_full_determinism, | |
nightly, | |
require_torch_accelerator, | |
slow, | |
torch_device, | |
) | |
from .single_file_testing_utils import ( | |
SDSingleFileTesterMixin, | |
download_original_config, | |
download_single_file_checkpoint, | |
) | |
enable_full_determinism() | |
class StableDiffusionPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): | |
pipeline_class = StableDiffusionPipeline | |
ckpt_path = ( | |
"https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors" | |
) | |
original_config = ( | |
"https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" | |
) | |
repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
inputs = { | |
"prompt": "a fantasy landscape, concept art, high resolution", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"strength": 0.75, | |
"guidance_scale": 7.5, | |
"output_type": "np", | |
} | |
return inputs | |
def test_single_file_format_inference_is_same_as_pretrained(self): | |
super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3) | |
def test_single_file_legacy_scheduler_loading(self): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) | |
local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) | |
local_original_config = download_original_config(self.original_config, tmpdir) | |
pipe = self.pipeline_class.from_single_file( | |
local_ckpt_path, | |
original_config=local_original_config, | |
cache_dir=tmpdir, | |
local_files_only=True, | |
scheduler_type="euler", | |
) | |
# Default is PNDM for this checkpoint | |
assert isinstance(pipe.scheduler, EulerDiscreteScheduler) | |
def test_single_file_legacy_scaling_factor(self): | |
new_scaling_factor = 10.0 | |
init_pipe = self.pipeline_class.from_single_file(self.ckpt_path) | |
pipe = self.pipeline_class.from_single_file(self.ckpt_path, scaling_factor=new_scaling_factor) | |
assert init_pipe.vae.config.scaling_factor != new_scaling_factor | |
assert pipe.vae.config.scaling_factor == new_scaling_factor | |
class StableDiffusion21PipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): | |
pipeline_class = StableDiffusionPipeline | |
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors" | |
original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml" | |
repo_id = "stabilityai/stable-diffusion-2-1" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
inputs = { | |
"prompt": "a fantasy landscape, concept art, high resolution", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"strength": 0.75, | |
"guidance_scale": 7.5, | |
"output_type": "np", | |
} | |
return inputs | |
def test_single_file_format_inference_is_same_as_pretrained(self): | |
super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3) | |
class StableDiffusionInstructPix2PixPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): | |
pipeline_class = StableDiffusionInstructPix2PixPipeline | |
ckpt_path = "https://huggingface.co/timbrooks/instruct-pix2pix/blob/main/instruct-pix2pix-00-22000.safetensors" | |
original_config = ( | |
"https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/refs/heads/main/configs/generate.yaml" | |
) | |
repo_id = "timbrooks/instruct-pix2pix" | |
single_file_kwargs = {"extract_ema": True} | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" | |
) | |
inputs = { | |
"prompt": "turn him into a cyborg", | |
"image": image, | |
"generator": generator, | |
"num_inference_steps": 3, | |
"guidance_scale": 7.5, | |
"image_guidance_scale": 1.0, | |
"output_type": "np", | |
} | |
return inputs | |
def test_single_file_format_inference_is_same_as_pretrained(self): | |
super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3) | |