Spaces:
Runtime error
Runtime error
File size: 5,758 Bytes
769af53 a140209 77e791d 769af53 77e791d f35434e a140209 77e791d 8e00393 77e791d e16892f 77e791d dde02d9 5d66f06 f35434e 1994eb7 36dcf79 f35434e 1994eb7 77e791d cb68d5c 77e791d cb68d5c 1994eb7 cb68d5c 77e791d 36dcf79 77e791d f35434e 77e791d f35434e dde02d9 e16892f a140209 2990c41 dde02d9 2990c41 dde02d9 f35434e dde02d9 1994eb7 36dcf79 1994eb7 dde02d9 a140209 77e791d a140209 dde02d9 2990c41 dde02d9 f35434e dde02d9 f35434e dde02d9 a140209 e16892f f35434e dde02d9 f35434e dde02d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import streamlit as st
from openai import OpenAI
import glob
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.callbacks import get_openai_callback
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_community.document_loaders import UnstructuredFileLoader
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
# Get all the filenames from the docs folder
files = glob.glob("./docs/*.txt")
# Load files into readable documents
docs = []
for file in files:
loader = UnstructuredFileLoader(file)
docs.append(loader.load()[0])
# Config
with st.sidebar:
st.write(f"Injected documents: \n\n {'\n'.join('\n'+file for file in files)}")
model = st.selectbox("Model name", ["gpt-3.5-turbo"], disabled=True)
temperature = st.number_input("Temperature", value=0.0, min_value=0.0, step=0.2, max_value=1.0, placeholder=0.0)
k = st.number_input("Number of documents to include", value=1, min_value=1, step=1, placeholder=1)
if st.toggle("Splitting", value=False):
chunk_size = st.number_input("Chunk size", value=750, step=250, placeholder=750) # Defines the chunks in amount of tokens in which the files are split. Also defines the amount of tokens that are feeded into the context.
chunk_overlap = st.number_input("Chunk overlap", value=0, step=10, placeholder=0)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
else:
vectorstore = Chroma.from_documents(documents=docs, embedding=OpenAIEmbeddings())
prompt_template ="""
You are called "Volker". You are an assistant for question-answering tasks.
You only answer questions about Long-Covid (use Post-Covid synonymously) and the Volker-App.
If you don't know the answer, just say that you don't know. Say why you don't know the answer.
Never answer questions about other diseases (e.g. Cancer-related fatigue, Multiple Sklerose).
Always answer in german language. Stay emphatic and positive.
When you use the word e.g "Arzt", "Ärzt", always write it as "Arzt".
Only use the following pieces of retrieved context to answer the question.
Question: {question}
Context: {context}
Answer:
""" # Source: hub.pull("rlm/rag-prompt")
# (1) Retriever
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.3, "k": k})
# (2) Prompt
prompt = ChatPromptTemplate.from_template(prompt_template)
# (3) LLM
# Define the LLM we want to use. Default is "gpt-3.5-turbo" with temperature 0.
# Temperature is a number between 0 and 1. With 0.8 it generates more random answers, with 0.2 it is more focused on the retrieved content. With temperature = 0 it uses log-probabilities depending on the content.
llm = ChatOpenAI(model_name=model, temperature=temperature)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
# rag_chain = (
# {"context": retriever | format_docs, "question": RunnablePassthrough()}
# | prompt
# | llm
# | StrOutputParser()
# )
rag_chain_from_docs = (
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
| prompt
| llm
| StrOutputParser()
)
rag_chain = RunnableParallel(
{"context": retriever, "question": RunnablePassthrough()}
).assign(answer=rag_chain_from_docs)
st.title("🐔 Volker-Chat")
def click_button(prompt):
st.session_state.clicked = True
st.session_state['prompt'] = prompt
c = st.container()
c.write("Beispielfragen")
col1, col2, col3 = c.columns(3)
col1.button("Mehr zu 'Lernen'", on_click=click_button, args=["Was macht die Säule 'Lernen' aus?"])
col1.button("Was macht die Volker-App?", on_click=click_button, args=["Was macht die Volker-App?"])
col2.button("Mehr zu 'Tracken'", on_click=click_button, args=["Was macht die Säule 'Tracken' aus?"])
col2.button("Welche Krankenkassen erstatten die App?", on_click=click_button, args=["Welche Krankenkassen erstatten die App?"])
col3.button("Mehr zu 'Handeln'", on_click=click_button, args=["Was macht die Säule 'Handeln' aus?"])
if 'clicked' not in st.session_state:
st.session_state.clicked = False
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "Ahoi! Ich bin Volker. Wie kann ich dir helfen?"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if st.session_state.clicked:
prompt = st.session_state['prompt']
st.chat_message("user").write(prompt)
with get_openai_callback() as cb:
response = rag_chain.invoke(prompt)
st.chat_message("assistant").write(response['answer'])
with st.expander("Kontext ansehen"):
st.write(response["context"])
with st.sidebar:
sidebar_c = st.container()
sidebar_c.success(cb)
if prompt := st.chat_input():
st.chat_message("user").write(prompt)
with get_openai_callback() as cb:
response = rag_chain.invoke(prompt)
st.chat_message("assistant").write(response['answer'])
with st.expander("Kontext ansehen"):
st.write(response["context"])
with st.sidebar:
sidebar_c = st.container()
sidebar_c.success(cb)
# cleanup
st.session_state.clicked = False
vectorstore.delete_collection()
|