Spaces:
Running
Running
File size: 5,333 Bytes
8655f82 039d611 4c8dbff 039d611 8655f82 039d611 a5b34f7 039d611 8655f82 039d611 8655f82 a5b34f7 8655f82 fc5a09a 8655f82 8ea3dab 039d611 88976aa 039d611 8655f82 8ea3dab 039d611 0872eb7 f6fe4f2 0872eb7 8ea3dab 0872eb7 f6fe4f2 0872eb7 8ea3dab 0872eb7 f6fe4f2 0872eb7 039d611 d15e848 e8d705f f6fe4f2 0872eb7 8ea3dab 5727bd1 88976aa 5727bd1 87fc391 8285b48 0872eb7 f6fe4f2 6d06d55 0872eb7 f6fe4f2 0872eb7 6d06d55 0872eb7 87fc391 8ea3dab 87fc391 1118a37 8ea3dab 1118a37 87fc391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import torch
import numpy as np
from torch.nn.utils.rnn import pad_sequence
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
# Load the model and tokenizer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_name = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
embedding_model = SentenceTransformer('AnnaWegmann/Style-Embedding', device='cpu')
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model.to(device)
def get_target_style_embeddings(target_texts_batch):
all_target_texts = [target_text for target_texts in target_texts_batch for target_text in target_texts]
embeddings = embedding_model.encode(all_target_texts, batch_size=len(all_target_texts), convert_to_tensor=True, show_progress_bar=False)
lengths = [len(target_texts) for target_texts in target_texts_batch]
split_embeddings = torch.split(embeddings, lengths)
padded_embeddings = pad_sequence(split_embeddings, batch_first=True, padding_value=0.0)
mask = (torch.arange(padded_embeddings.size(1))[None, :] < torch.tensor(lengths)[:, None]).to(torch.float32).unsqueeze(-1)
mean_embeddings = torch.sum(padded_embeddings * mask, dim=1) / mask.sum(dim=1)
return mean_embeddings.cpu().numpy()
def run_tinystyler_batch(source_texts, target_texts_batch, reranking, temperature, top_p):
inputs = tokenizer(source_texts, return_tensors="pt")
target_style_embeddings = get_target_style_embeddings(target_texts_batch)
# Generate the output with specified temperature and top_p
output = model.generate(
inputs["input_ids"],
do_sample=True,
temperature=temperature,
top_p=top_p,
max_length=1024
)
generated_texts = tokenizer.decode_batch(output, skip_special_tokens=True)
return generated_texts
def run_tinystyler(source_text, target_texts, reranking, temperature, top_p):
target_texts = [target_text.strip() for target_text in target_texts.split("\n")]
return run_tinystyler_batch([source_text], [target_texts], reranking, temperature, top_p)[0]
# Preset examples with cached generations
preset_examples = {
"Example 1": {
"source_text": "Once upon a time in a small village",
"target_texts": "In a land far away, there was a kingdom ruled by a wise king. Every day, the people of the kingdom would gather to listen to the king's stories, which were full of wisdom and kindness.",
"reranking": 5,
"temperature": 1.0,
"top_p": 1.0,
"output": "Once upon a time in a small village in a land far away, there was a kingdom ruled by a wise king. Every day, the people of the kingdom would gather to listen to the king's stories, which were full of wisdom and kindness."
},
"Example 2": {
"source_text": "The quick brown fox",
"target_texts": "A nimble, chocolate-colored fox swiftly darted through the emerald forest, weaving between trees with grace and agility.",
"reranking": 5,
"temperature": 0.9,
"top_p": 0.9,
"output": "The quick brown fox, a nimble, chocolate-colored fox, swiftly darted through the emerald forest, weaving between trees with grace and agility."
}
}
# Define Gradio interface
with gr.Blocks(theme="ParityError/[email protected]") as demo:
gr.Markdown("# TinyStyler Demo")
gr.Markdown("Style transfer the source text into the target style, given some example texts of the target style. You can adjust re-ranking and top_p to your desire to control the quality of style transfer. A higher re-ranking value will generally result in better generations, at slower speed.")
with gr.Row():
example_dropdown = gr.Dropdown(label="Examples", choices=list(preset_examples.keys()))
source_text = gr.Textbox(lines=3, placeholder="Enter the source text to transform into the target style...", label="Source Text")
target_texts = gr.Textbox(lines=5, placeholder="Enter example texts of the target style (one per line)...", label="Example Texts of the Target Style")
reranking = gr.Slider(1, 10, value=5, step=1, label="Re-ranking")
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="Top-P")
output = gr.Textbox(lines=5, placeholder="Click 'Generate' to transform the source text into the target style.", label="Output", interactive=False)
def set_example(example_name):
example = preset_examples[example_name]
return example["source_text"], example["target_texts"], example["reranking"], example["temperature"], example["top_p"], example["output"]
example_dropdown.change(
set_example,
inputs=[example_dropdown],
outputs=[source_text, target_texts, reranking, temperature, top_p, output]
)
btn = gr.Button("Generate")
btn.click(run_tinystyler, [source_text, target_texts, reranking, temperature, top_p], output)
# Initialize the fields with the first example
example_dropdown.value, (source_text.value, target_texts.value, reranking.value, temperature.value, top_p.value, output.value) = list(preset_examples.keys())[0], set_example(list(preset_examples.keys())[0])
demo.launch() |