File size: 7,207 Bytes
4d6e8c2
3b09640
 
 
 
 
 
 
61985ff
4d6e8c2
3b09640
 
 
 
4d6e8c2
 
 
61985ff
1c33274
70f5f26
04cb990
61985ff
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c33274
70f5f26
4d6e8c2
 
3b09640
70f5f26
 
3b09640
70f5f26
3b09640
 
 
 
4d6e8c2
3b09640
4d6e8c2
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b67fb6
 
41e94b4
74177a8
933c912
61985ff
3b09640
1e16d37
933c912
3b09640
1e16d37
933c912
 
3b09640
 
1e16d37
 
 
 
933c912
1e16d37
289d26d
933c912
814440d
1e16d37
933c912
 
1e16d37
933c912
1e16d37
61985ff
1e16d37
 
0d55441
1e16d37
 
 
2478bb3
1e16d37
 
 
 
 
 
 
 
 
289d26d
933c912
289d26d
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
 
3b09640
70f5f26
3b09640
 
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
3b09640
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score
import random
import os

from ultralytics import YOLO  # Import YOLO
from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

DESCRIPTION = "YOLO Smoke Detection"
ROUTE = "/image"

yolo_model = YOLO("best.pt")

def parse_boxes(annotation_string):
    """Parse multiple boxes from a single annotation string.
    Each box has 5 values: class_id, x_center, y_center, width, height"""
    values = [float(x) for x in annotation_string.strip().split()]
    boxes = []
    # Each box has 5 values
    for i in range(0, len(values), 5):
        if i + 5 <= len(values):
            # Skip class_id (first value) and take the next 4 values
            box = values[i+1:i+5]
            boxes.append(box)
    return boxes

def compute_iou(box1, box2):
    """Compute Intersection over Union (IoU) between two YOLO format boxes."""
    # Convert YOLO format (x_center, y_center, width, height) to corners
    def yolo_to_corners(box):
        x_center, y_center, width, height = box
        x1 = x_center - width/2
        y1 = y_center - height/2
        x2 = x_center + width/2
        y2 = y_center + height/2
        return np.array([x1, y1, x2, y2])
    
    box1_corners = yolo_to_corners(box1)
    box2_corners = yolo_to_corners(box2)
    
    # Calculate intersection
    x1 = max(box1_corners[0], box2_corners[0])
    y1 = max(box1_corners[1], box2_corners[1])
    x2 = min(box1_corners[2], box2_corners[2])
    y2 = min(box1_corners[3], box2_corners[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    
    # Calculate union
    box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
    box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
    union = box1_area + box2_area - intersection
    
    return intersection / (union + 1e-6)

def compute_max_iou(true_boxes, pred_box):
    """Compute maximum IoU between a predicted box and all true boxes"""
    max_iou = 0
    for true_box in true_boxes:
        iou = compute_iou(true_box, pred_box)
        max_iou = max(max_iou, iou)
    return max_iou

@router.post(ROUTE, tags=["Image Task"],
             description=DESCRIPTION)
async def evaluate_image(request: ImageEvaluationRequest):
    """
    Evaluate image classification and object detection for forest fire smoke.
    
    Current Model: Random Baseline
    - Makes random predictions for both classification and bounding boxes
    - Used as a baseline for comparison
    
    Metrics:
    - Classification accuracy: Whether an image contains smoke or not
    - Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
    """
    # Get space info
    username, space_url = get_space_info()
    
    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
    
    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline with your model inference
    #--------------------------------------------------------------------------------------------   
    predictions = []
    true_labels = []
    pred_boxes = []  # Flattened list of predicted boxes
    true_boxes_list = []  # Flattened list of ground truth boxes

    for example in test_dataset:
        # Extract image and annotations
        image = example["image"]
        annotation = example.get("annotations", "").strip()
        
        # Determine if ground truth smoke is present
        has_smoke = len(annotation) > 0
        true_labels.append(1 if has_smoke else 0)
    
        # Parse ground truth boxes if smoke is present
        if has_smoke:
            image_true_boxes = parse_boxes(annotation)
            if image_true_boxes:
                true_boxes_list.append(image_true_boxes)
            else:
                true_boxes_list.append([])  # Add empty list if parsing fails
        else:
            true_boxes_list.append([])  # Add empty list for no ground truth smoke
    
        # Perform YOLO inference
        results = yolo_model .predict(image, verbose=False)
        
        # Extract predicted box if predictions exist
        if len(results[0].boxes):
            pred_box = results[0].boxes.xywhn[0].cpu().numpy().tolist()
            predictions.append(1)  # Predicted smoke
            pred_boxes.append(pred_box)
        else:
            predictions.append(0)  # No smoke predicted
            pred_boxes.append([])  # Add empty list if no prediction

    # Filter out entries with empty boxes
    filtered_true_boxes_list = []
    filtered_pred_boxes = []

    for true_boxes, pred_boxes_entry in zip(true_boxes_list, pred_boxes):
        if true_boxes and pred_boxes_entry:  # Keep only if neither is empty
            filtered_true_boxes_list.append(true_boxes)
            filtered_pred_boxes.append(pred_boxes_entry)
    
    
    # Replace the original lists with the filtered ones
    true_boxes_list = filtered_true_boxes_list
    pred_boxes = filtered_pred_boxes
    
       

    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate classification accuracy
    classification_accuracy = accuracy_score(true_labels, predictions)
    
    # Calculate mean IoU for object detection (only for images with smoke)
    # For each image, we compute the max IoU between the predicted box and all true boxes
    ious = []
    for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
        max_iou = compute_max_iou(true_boxes, pred_box)
        ious.append(max_iou)
    
    mean_iou = float(np.mean(ious)) if ious else 0.0
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "classification_accuracy": float(classification_accuracy),
        "mean_iou": mean_iou,
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    return results