File size: 5,574 Bytes
ce74a88 b837136 0b7f87e e695abb 303db20 9269376 e695abb 0b7f87e dd250a3 b837136 0b7f87e 5dea382 0b7f87e 5dea382 0b7f87e 16a16af c3ee49d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# import gradio as gr
# import requests
# import os
# def function1(prompt):
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
# "data": [
# prompt,
# ]}).json()
# message = response["data"][0]
# url = 'https://api.elevenlabs.io/v1/text-to-speech/pNInz6obpgDQGcFmaJgB'
# headers = {
# 'accept': 'audio/mpeg',
# 'xi-api-key': os.environ.get("test2"),
# 'Content-Type': 'application/json'
# }
# data = {
# "text": message,
# "voice_settings": {
# "stability": 0,
# "similarity_boost": 0
# }
# }
# response = requests.post(url, headers=headers, json=data)
# if response.status_code == 200:
# file_path = 'test.mp3'
# if os.path.isfile(file_path):
# os.remove(file_path)
# with open(file_path, 'wb') as f:
# f.write(response.content)
# return "test.mp3"
# iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
# iface.launch()
# import gradio as gr
# import requests
# import urllib.request
# from pydub import AudioSegment
# import numpy as np
# import os
# def function1(prompt):
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
# "data": [
# prompt,
# ]}).json()
# data = response["data"][0]
# response = requests.post("https://matthijs-speecht5-tts-demo.hf.space/run/predict", json={
# "data": [
# data,
# "KSP (male)",
# ]
# }).json()
# data = response["data"][0]["name"]
# data = "https://matthijs-speecht5-tts-demo.hf.space/file="+data
# file_name, headers = urllib.request.urlretrieve(data, "speech.mp3")
# # code = random.randint(1,1000)
# # generated_file = f"output{code}"
# filename = "output.mp3"
# if os.path.exists(filename):
# os.remove(filename)
# else:
# pass
# command = f"ffmpeg -i {file_name} -vn -ar 44100 -ac 2 -b:a 192k output.mp3"
# os.system(command)
# return "output.mp3"
# iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
# iface.launch()
# import gradio as gr
# import requests
# import urllib.request
# from pydub import AudioSegment
# import numpy as np
# import os
# import sys
# import wave
# import io
# import base64
# import azure.cognitiveservices.speech as speechsdk
# speech_key = os.environ.get("test3")
# service_region = os.environ.get("test4")
# speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
# # Note: the voice setting will not overwrite the voice element in input SSML.
# speech_config.speech_synthesis_voice_name = os.environ.get("test5")
# def function1(prompt):
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
# "data": [
# prompt,
# ]}).json()
# message = response["data"][0]
# speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config)
# result = speech_synthesizer.speak_text_async(message).get()
# if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
# audio_stream = io.BytesIO(result.audio_data)
# # Create a wave file object and write the audio data to it
# with wave.open("audio.wav", 'wb') as wave_file:
# wave_file.setnchannels(1)
# wave_file.setsampwidth(2)
# wave_file.setframerate(16000)
# wave_file.writeframesraw(audio_stream.getvalue())
# # Use ffmpeg to convert the wave file to an mp3 file
# filename = "output.mp3"
# if os.path.exists(filename):
# os.remove(filename)
# else:
# pass
# command = f"ffmpeg -i audio.wav -y -codec:a libmp3lame -qscale:a 2 {filename}"
# os.system(command)
# return "output.mp3"
# iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
# iface.launch()
import gradio as gr
import requests
import os
def function2(prompt):
response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
"data": [
prompt,
]}).json()
message = response["data"][0]
url = "https://api.dynapictures.com/designs/7c4aba1d73"
test6 = os.environ.get("test6")
headers = {
"Authorization": f"Bearer {test6}",
"Content-Type": "application/json"
}
payload = {
"format": "jpeg",
"metadata": "some text",
"params": [
{
"name": "bubble",
"imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/568b337221.png"
},
{
"name": "quotes",
"imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/779f8b9041.png"
},
{
"name": "text",
"text": message
},
{
"name": "avatar",
"imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/2f7ddd7b55.jpg"
},
{
"name": "name",
"text": "JohnAI"
},
{
"name": "title",
"text": "Automated"
}
]
}
response = requests.post(url, headers=headers, data=json.dumps(payload))
response = response.json()
response = response["imageUrl"]
return response
iface = gr.Interface(fn=function2, inputs="text", outputs="text")
iface.launch() |