File size: 5,604 Bytes
ce74a88 b837136 9ad0a66 0b7f87e 9ad0a66 0b7f87e 9ad0a66 0b7f87e 9ad0a66 0b7f87e 9ad0a66 e695abb 9ad0a66 0b7f87e 9ad0a66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# import gradio as gr
# import requests
# import os
# def function1(prompt):
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
# "data": [
# prompt,
# ]}).json()
# message = response["data"][0]
# url = 'https://api.elevenlabs.io/v1/text-to-speech/pNInz6obpgDQGcFmaJgB'
# headers = {
# 'accept': 'audio/mpeg',
# 'xi-api-key': os.environ.get("test2"),
# 'Content-Type': 'application/json'
# }
# data = {
# "text": message,
# "voice_settings": {
# "stability": 0,
# "similarity_boost": 0
# }
# }
# response = requests.post(url, headers=headers, json=data)
# if response.status_code == 200:
# file_path = 'test.mp3'
# if os.path.isfile(file_path):
# os.remove(file_path)
# with open(file_path, 'wb') as f:
# f.write(response.content)
# return "test.mp3"
# iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
# iface.launch()
# import gradio as gr
# import requests
# import urllib.request
# from pydub import AudioSegment
# import numpy as np
# import os
# def function1(prompt):
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
# "data": [
# prompt,
# ]}).json()
# data = response["data"][0]
# response = requests.post("https://matthijs-speecht5-tts-demo.hf.space/run/predict", json={
# "data": [
# data,
# "KSP (male)",
# ]
# }).json()
# data = response["data"][0]["name"]
# data = "https://matthijs-speecht5-tts-demo.hf.space/file="+data
# file_name, headers = urllib.request.urlretrieve(data, "speech.mp3")
# # code = random.randint(1,1000)
# # generated_file = f"output{code}"
# filename = "output.mp3"
# if os.path.exists(filename):
# os.remove(filename)
# else:
# pass
# command = f"ffmpeg -i {file_name} -vn -ar 44100 -ac 2 -b:a 192k output.mp3"
# os.system(command)
# return "output.mp3"
# iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
# iface.launch()
import gradio as gr
import requests
import urllib.request
from pydub import AudioSegment
import numpy as np
import os
import sys
import wave
import io
import base64
import azure.cognitiveservices.speech as speechsdk
speech_key = os.environ.get("test3")
service_region = os.environ.get("test4")
speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
# Note: the voice setting will not overwrite the voice element in input SSML.
speech_config.speech_synthesis_voice_name = os.environ.get("test5")
def function1(prompt):
response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
"data": [
prompt,
]}).json()
message = response["data"][0]
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config)
result = speech_synthesizer.speak_text_async(message).get()
if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
audio_stream = io.BytesIO(result.audio_data)
# Create a wave file object and write the audio data to it
with wave.open("audio.wav", 'wb') as wave_file:
wave_file.setnchannels(1)
wave_file.setsampwidth(2)
wave_file.setframerate(16000)
wave_file.writeframesraw(audio_stream.getvalue())
# Use ffmpeg to convert the wave file to an mp3 file
filename = "output.mp3"
if os.path.exists(filename):
os.remove(filename)
else:
pass
command = f"ffmpeg -i audio.wav -y -codec:a libmp3lame -qscale:a 2 {filename}"
os.system(command)
return "output.mp3"
iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
iface.launch()
# import gradio as gr
# import requests
# import json
# import os
# def function2(prompt):
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
# "data": [
# prompt,
# ]}).json()
# message = response["data"][0]
# url = "https://api.dynapictures.com/designs/7c4aba1d73"
# test6 = os.environ.get("test6")
# headers = {
# "Authorization": f"Bearer {test6}",
# "Content-Type": "application/json"
# }
# payload = {
# "format": "jpeg",
# "metadata": "some text",
# "params": [
# {
# "name": "bubble",
# "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/568b337221.png"
# },
# {
# "name": "quotes",
# "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/779f8b9041.png"
# },
# {
# "name": "text",
# "text": message
# },
# {
# "name": "avatar",
# "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/2f7ddd7b55.jpg"
# },
# {
# "name": "name",
# "text": "JohnAI"
# },
# {
# "name": "title",
# "text": "Automated"
# }
# ]
# }
# response = requests.post(url, headers=headers, data=json.dumps(payload))
# response = response.json()
# response = response["imageUrl"]
# return response
# iface = gr.Interface(fn=function2, inputs="text", outputs="text")
# iface.launch() |