File size: 7,596 Bytes
ce74a88 b837136 9ad0a66 6db6ca1 16201fe da3ccad f92ea75 ec887ee da3ccad ad2e5a0 6db6ca1 da3ccad ec887ee da3ccad f92ea75 da3ccad f92ea75 9ad0a66 f92ea75 9ad0a66 f92ea75 9ad0a66 f92ea75 9ad0a66 0b7f87e 9ad0a66 0b7f87e 9ad0a66 0b7f87e 9ad0a66 0b7f87e 9ad0a66 e695abb 9ad0a66 0b7f87e 9ad0a66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# import gradio as gr
# import requests
# import os
# def function1(prompt):
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
# "data": [
# prompt,
# ]}).json()
# message = response["data"][0]
# url = 'https://api.elevenlabs.io/v1/text-to-speech/pNInz6obpgDQGcFmaJgB'
# headers = {
# 'accept': 'audio/mpeg',
# 'xi-api-key': os.environ.get("test2"),
# 'Content-Type': 'application/json'
# }
# data = {
# "text": message,
# "voice_settings": {
# "stability": 0,
# "similarity_boost": 0
# }
# }
# response = requests.post(url, headers=headers, json=data)
# if response.status_code == 200:
# file_path = 'test.mp3'
# if os.path.isfile(file_path):
# os.remove(file_path)
# with open(file_path, 'wb') as f:
# f.write(response.content)
# return "test.mp3"
# iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
# iface.launch()
# import gradio as gr
# import requests
# import urllib.request
# from pydub import AudioSegment
# import numpy as np
# import os
# def function1(prompt):
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
# "data": [
# prompt,
# ]}).json()
# data = response["data"][0]
# response = requests.post("https://matthijs-speecht5-tts-demo.hf.space/run/predict", json={
# "data": [
# data,
# "KSP (male)",
# ]
# }).json()
# data = response["data"][0]["name"]
# data = "https://matthijs-speecht5-tts-demo.hf.space/file="+data
# file_name, headers = urllib.request.urlretrieve(data, "speech.mp3")
# # code = random.randint(1,1000)
# # generated_file = f"output{code}"
# filename = "output.mp3"
# if os.path.exists(filename):
# os.remove(filename)
# else:
# pass
# command = f"ffmpeg -i {file_name} -vn -ar 44100 -ac 2 -b:a 192k output.mp3"
# os.system(command)
# return "output.mp3"
# iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
# iface.launch()
import requests
import base64
import os
import gradio as gr
def function(prompt):
target = os.environ.get("target")
response = requests.post(target, json={ ###################################### WORKING API######################################
"prompt": [
prompt,
]})
data = response
data = str(data.content,"utf-8")
result = base64.b64encode(data.encode('utf-8'))
result2 = result.decode('utf-8')
return result2
iface = gr.Interface(fn=function, inputs="text", outputs="text")
iface.launch()
# import gradio as gr
# import requests
# import base64
# import time
# import os
# import re
# def function(prompt):
# url = os.environ.get("test7")
# referrer = os.environ.get("test13")
# headers = {
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36 Edge/16.16299",
# "Accept": "application/json",
# "Accept-Language": "en-US,en;q=0.5",
# "Referer": referrer,
# "Connection": "keep-alive",
# "TE": "Trailers",
# "Flag-Real-Time-Data": "true"
# }
# data = {
# "input": prompt
# }
# response = requests.post(url, headers=headers, json=data)
# response = response.json()
# output = response["output"]
# trigger1 = os.environ.get("test9")
# trigger2 = os.environ.get("test10")
# set1 = os.environ.get("test11")
# set2 = os.environ.get("test12")
# if trigger1 in output and trigger2 in output:
# output = re.sub(trigger2, set1, output)
# output = re.sub(trigger1, set2, output)
# result = base64.b64encode(output.encode('utf-8'))
# result2 = result.decode('utf-8')
# return output
# iface = gr.Interface(fn=function, inputs="text", outputs="text")
# iface.launch()
# ********************************************************************************************
# import gradio as gr
# import requests
# import urllib.request
# from pydub import AudioSegment
# import numpy as np
# import os
# import sys
# import wave
# import io
# import base64
# import azure.cognitiveservices.speech as speechsdk
# speech_key = os.environ.get("test3")
# service_region = os.environ.get("test4")
# speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
# # Note: the voice setting will not overwrite the voice element in input SSML.
# speech_config.speech_synthesis_voice_name = os.environ.get("test5")
# def function1(prompt):
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
# "data": [
# prompt,
# ]}).json()
# message = response["data"][0]
# speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config)
# result = speech_synthesizer.speak_text_async(message).get()
# if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
# audio_stream = io.BytesIO(result.audio_data)
# # Create a wave file object and write the audio data to it
# with wave.open("audio.wav", 'wb') as wave_file:
# wave_file.setnchannels(1)
# wave_file.setsampwidth(2)
# wave_file.setframerate(16000)
# wave_file.writeframesraw(audio_stream.getvalue())
# # Use ffmpeg to convert the wave file to an mp3 file
# filename = "output.mp3"
# if os.path.exists(filename):
# os.remove(filename)
# else:
# pass
# command = f"ffmpeg -i audio.wav -y -codec:a libmp3lame -qscale:a 2 {filename}"
# os.system(command)
# return "output.mp3"
# iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
# iface.launch()
# import gradio as gr
# import requests
# import json
# import os
# def function2(prompt):
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
# "data": [
# prompt,
# ]}).json()
# message = response["data"][0]
# url = "https://api.dynapictures.com/designs/7c4aba1d73"
# test6 = os.environ.get("test6")
# headers = {
# "Authorization": f"Bearer {test6}",
# "Content-Type": "application/json"
# }
# payload = {
# "format": "jpeg",
# "metadata": "some text",
# "params": [
# {
# "name": "bubble",
# "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/568b337221.png"
# },
# {
# "name": "quotes",
# "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/779f8b9041.png"
# },
# {
# "name": "text",
# "text": message
# },
# {
# "name": "avatar",
# "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/2f7ddd7b55.jpg"
# },
# {
# "name": "name",
# "text": "JohnAI"
# },
# {
# "name": "title",
# "text": "Automated"
# }
# ]
# }
# response = requests.post(url, headers=headers, data=json.dumps(payload))
# response = response.json()
# response = response["imageUrl"]
# return response
# iface = gr.Interface(fn=function2, inputs="text", outputs="text")
# iface.launch() |