X-RayDemo / models /R2GenGPT.py
tousin23's picture
Upload 41 files
6551065 verified
import os
import json
import torch
import torch.nn as nn
import lightning.pytorch as pl
from transformers import LlamaForCausalLM, LlamaTokenizer
from evalcap.bleu.bleu import Bleu
from evalcap.rouge.rouge import Rouge
from evalcap.cider.cider import Cider
from evalcap.meteor.meteor import Meteor
from transformers import SwinModel
from lightning_tools.optim import config_optimizer
from peft import get_peft_model, LoraConfig, TaskType
import pdb
class R2GenGPT(pl.LightningModule):
"""
R2GenGPT model.
"""
def __init__(self, args):
super().__init__()
self.args = args
self.save_hyperparameters(args)
print(f'Loading vision encoder:{args.vision_model}')
self.visual_encoder = SwinModel.from_pretrained(args.vision_model)
if args.vis_use_lora:
peft_config_visual = LoraConfig(
r=args.vis_r,
lora_alpha=args.vis_alpha,
target_modules=["query", "value"],
lora_dropout=args.lora_dropout,
bias="none",
modules_to_save=["classifier"],
)
self.visual_encoder = get_peft_model(self.visual_encoder, peft_config_visual)
self.visual_encoder.print_trainable_parameters()
print('Loading vision encoder with LoRA -- Done')
elif args.freeze_vm:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
print(f'Loading Frozen vision encoder:{args.vision_model} -- Done')
else:
print(f'Loading Trainable vision encoder:{args.vision_model} -- Done')
print('Loading LLAMA')
self.llama_tokenizer = LlamaTokenizer.from_pretrained(args.llama_model, use_fast=False)
self.llama_tokenizer.pad_token_id = 0
if args.low_resource:
self.llama_model = LlamaForCausalLM.from_pretrained(
args.llama_model,
torch_dtype=torch.float16,
load_in_8bit=True,
device_map="auto"
)
else:
self.llama_model = LlamaForCausalLM.from_pretrained(
args.llama_model,
torch_dtype=torch.float16,
)
if args.llm_use_lora:
self.embed_tokens = self.llama_model.get_input_embeddings()
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False, r=args.llm_r, lora_alpha=args.llm_alpha, lora_dropout=args.lora_dropout
)
self.llama_model = get_peft_model(self.llama_model, peft_config)
self.llama_model.print_trainable_parameters()
print('Loading LLAMA LoRA Done')
else:
self.embed_tokens = self.llama_model.get_input_embeddings()
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
print('Loading LLAMA Done')
self.llama_proj = nn.Linear(self.visual_encoder.num_features, self.llama_model.config.hidden_size)
self.layer_norm = nn.LayerNorm(self.llama_model.config.hidden_size)
self.end_sym = args.end_sym
self.prompt = 'Generate a comprehensive and detailed diagnosis report for this chest xray image.'
self.val_step_outputs = []
self.test_step_outputs = []
self.val_score = 0.0
if args.delta_file is not None:
state_dict = torch.load(args.delta_file, map_location=torch.device(f'cuda:{torch.cuda.current_device()}'))['model']
self.load_state_dict(state_dict=state_dict, strict=False)
print(f'Load checkpoint from {args.delta_file}')
def score(self, ref, hypo):
"""
ref, dictionary of reference sentences (id, sentence)
hypo, dictionary of hypothesis sentences (id, sentence)
score, dictionary of scores
"""
scorers = [
(Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
(Rouge(), "ROUGE_L"),
(Meteor(), "METEOR"),
(Cider(), "CIDEr")
]
final_scores = {}
for scorer, method in scorers:
score, scores = scorer.compute_score(ref, hypo)
if type(score) == list:
for m, s in zip(method, score):
final_scores[m] = s
else:
final_scores[method] = score
return final_scores
def encode_img(self, images):
image_embeds = []
for image in images:
device = image.device
if self.hparams.global_only:
image_embed = self.visual_encoder(image)['pooler_output'].unsqueeze(1).to(device)
else:
image_embed = self.visual_encoder(image)['last_hidden_state'].to(device)
image_embeds.append(image_embed)
image_embeds = torch.stack(image_embeds).mean(0)
inputs_llama = self.llama_proj(image_embeds)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds, atts_img):
prompt=f'Human: <Img><ImageHere></Img> {self.prompt} \nAssistant:'
batch_size = img_embeds.shape[0]
p_before, p_after = prompt.split('<ImageHere>')
p_before_tokens = self.llama_tokenizer(
p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_after_tokens = self.llama_tokenizer(
p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_before_embeds = self.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
p_after_embeds = self.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds, p_after_embeds], dim=1)
wrapped_atts_img = atts_img[:, :1].expand(-1, wrapped_img_embeds.shape[1])
return wrapped_img_embeds, wrapped_atts_img
def forward(self, samples):
image = samples["image"]
img_embeds, atts_img = self.encode_img(image)
img_embeds = self.layer_norm(img_embeds)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img)
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in samples["input_text"]]
to_regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.hparams.max_length,
add_special_tokens=False
).to(image[0].device)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == 0, -100
)
empty_targets = (
torch.ones([atts_img.shape[0], atts_img.shape[1]+1],
dtype=torch.long).to(image[0].device).fill_(-100) # plus one for bos
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.embed_tokens(bos)
atts_bos = atts_img[:, :1]
to_regress_embeds = self.embed_tokens(to_regress_tokens.input_ids)
inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds], dim=1)
attention_mask = torch.cat([atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
def training_step(self, batch, batch_idx):
result = self(batch)
self.log_dict(result, prog_bar=True)
return result
def save_checkpoint(self, eval_res):
current_epoch, global_step = self.trainer.current_epoch, self.trainer.global_step
param_grad_dic = {
k: v.requires_grad for (k, v) in self.named_parameters() if v.requires_grad
}
state_dict = self.state_dict()
for k in list(state_dict.keys()):
if k not in param_grad_dic.keys():
del state_dict[k]
save_obj = {
"model": state_dict,
"config": self.hparams,
"epoch": current_epoch,
"step":global_step
}
os.makedirs(os.path.join(self.hparams.savedmodel_path, 'checkpoints'), exist_ok=True)
save_to = os.path.join(
self.hparams.savedmodel_path, 'checkpoints',
"checkpoint_epoch{}_step{}_bleu{:3f}_cider{:3f}.pth".format(current_epoch, global_step, eval_res['Bleu_4'], eval_res['CIDEr']),
)
self.print("Saving checkpoint at step {} to {}.".format(global_step, save_to))
torch.save(save_obj, save_to)
def validation_step(self, samples, batch_idx):
self.llama_tokenizer.padding_side = "right"
to_regress_tokens = self.llama_tokenizer(
samples['input_text'],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.hparams.max_length,
add_special_tokens=False
)
image = samples["image"]
img_embeds, atts_img = self.encode_img(image)
img_embeds = self.layer_norm(img_embeds)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=atts_img.dtype,
device=atts_img.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.embed_tokens(bos)
atts_bos = atts_img[:, :1]
inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1)
attention_mask = torch.cat([atts_bos, atts_img], dim=1)
outputs = self.llama_model.generate(
inputs_embeds=inputs_embeds,
num_beams=self.hparams.beam_size,
do_sample=self.hparams.do_sample,
min_new_tokens=self.hparams.min_new_tokens,
max_new_tokens=self.hparams.max_new_tokens,
repetition_penalty=self.hparams.repetition_penalty,
length_penalty=self.hparams.length_penalty,
temperature=self.hparams.temperature,
)
hypo = [self.decode(i) for i in outputs]
ref = [self.decode(i) for i in to_regress_tokens['input_ids']]
self.val_step_outputs.append({"hypo": hypo, "ref": ref, "id": samples["id"]})
return hypo, ref
def decode(self, output_token):
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
output_token = output_token[1:]
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it
output_token = output_token[1:]
output_text = self.llama_tokenizer.decode(output_token, add_special_tokens=False)
output_text = output_text.split('</s>')[0].strip()
output_text = output_text.replace('<unk>', '')
return output_text
def on_validation_epoch_end(self):
ref, hypo, ids = [], [], []
for i in self.val_step_outputs:
ref.extend(i['ref'])
hypo.extend(i['hypo'])
ids.extend(i['id'])
ref = {k:[v] for k, v in zip(ids, ref)}
hypo = {k:[v] for k, v in zip(ids, hypo)}
eval_res = self.score(ref=ref,hypo=hypo)
self.log_dict(eval_res, sync_dist=True, logger=True)
result_folder = os.path.join(self.hparams.savedmodel_path, 'result')
os.makedirs(result_folder, exist_ok=True)
current_epoch, global_step = self.trainer.current_epoch, self.trainer.global_step
json.dump(hypo, open(os.path.join(result_folder, f"result_{current_epoch}_{global_step}" + '.json'), 'w'))
json.dump(ref, open(os.path.join(result_folder, 'refs.json'), 'w'))
self.print(eval_res)
val_score = 0
for score_type, weight in zip(self.hparams.scorer_types, self.hparams.weights):
val_score += eval_res[score_type] * weight
if self.trainer.local_rank == 0:
if val_score > self.val_score:
self.save_checkpoint(eval_res)
self.val_score = val_score
self.val_step_outputs.clear()
def test_step(self, samples, batch_idx):
self.llama_tokenizer.padding_side = "right"
to_regress_tokens = self.llama_tokenizer(
samples['input_text'],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.hparams.max_length,
add_special_tokens=False
)
image = samples["image"]
img_embeds, atts_img = self.encode_img(image)
img_embeds = self.layer_norm(img_embeds)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=atts_img.dtype,
device=atts_img.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.embed_tokens(bos)
atts_bos = atts_img[:, :1]
inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1)
attention_mask = torch.cat([atts_bos, atts_img], dim=1)
outputs = self.llama_model.generate(
inputs_embeds=inputs_embeds,
num_beams=self.hparams.beam_size,
do_sample=self.hparams.do_sample,
min_new_tokens=self.hparams.min_new_tokens,
max_new_tokens=self.hparams.max_new_tokens,
repetition_penalty=self.hparams.repetition_penalty,
length_penalty=self.hparams.length_penalty,
temperature=self.hparams.temperature,
)
hypo = [self.decode(i) for i in outputs]
ref = [self.decode(i) for i in to_regress_tokens['input_ids']]
self.test_step_outputs.append({"hypo": hypo, "ref": ref, "id": samples["id"]})
return hypo, ref
def on_test_epoch_end(self):
"""
This function is called at the end of the test epoch.
It is recommended to test on single device to ensure each sample/batch gets evaluated exactly once. This is helpful to make sure benchmarking for research papers is done the right way. Otherwise, in a multi-device setting, samples could occur duplicated when DistributedSampler is used, for eg. with strategy="ddp". It replicates some samples on some devices to make sure all devices have same batch size in case of uneven inputs.
"""
ref, hypo, ids = [], [], []
for i in self.test_step_outputs:
ref.extend(i['ref'])
hypo.extend(i['hypo'])
ids.extend(i['id'])
ref = {k:[v] for k, v in zip(ids, ref)}
hypo = {k:[v] for k, v in zip(ids, hypo)}
eval_res = self.score(ref=ref,hypo=hypo)
result_folder = os.path.join(self.hparams.savedmodel_path, 'result')
os.makedirs(result_folder, exist_ok=True)
json.dump(hypo, open(os.path.join(result_folder, f"test_result.json"), 'w'))
json.dump(ref, open(os.path.join(result_folder, 'test_refs.json'), 'w'))
self.print(f"Test result of {self.hparams.delta_file}: {eval_res}")
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.learning_rate)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=self.hparams.max_epochs, eta_min=1e-6)
return {"optimizer": optimizer, "lr_scheduler": scheduler}
def get_progress_bar_dict(self):
# don't show the version number
items = super().get_progress_bar_dict()
items.pop("v_num", None)
return items
def optimizer_zero_grad(self, epoch, batch_idx, optimizer):
optimizer.zero_grad()