Spaces:
Running
Running
File size: 4,515 Bytes
b25ab31 02fc3d4 b25ab31 bfabfc6 b25ab31 02fc3d4 b25ab31 02fc3d4 b25ab31 02fc3d4 bfabfc6 02fc3d4 b25ab31 02fc3d4 b25ab31 02fc3d4 bfabfc6 02fc3d4 bfabfc6 02fc3d4 bfabfc6 02fc3d4 bfabfc6 02fc3d4 bfabfc6 02fc3d4 b25ab31 02fc3d4 b25ab31 02fc3d4 b25ab31 02fc3d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
import numpy as np
import torch
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # Текущая/последняя загруженная модель
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# Изначально загружаем модель по умолчанию
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
model,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
global model_repo_id, pipe
# Проверяем, нужно ли менять модель
if model != model_repo_id:
try:
# Пробуем загрузить новую модель
new_pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
new_pipe = new_pipe.to(device)
# Если успешно, то обновляем pipe и модель
pipe = new_pipe
model_repo_id = model
except Exception as e:
raise gr.Error(f"Не удалось загрузить модель {model}. Ошибка: {str(e)}")
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image App")
# Вместо выпадающего списка — текстовое поле для ввода модели
model = gr.Textbox(
label="Model name or path",
value="stabilityai/sdxl-turbo", # Значение по умолчанию
interactive=True
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|