File size: 4,515 Bytes
b25ab31
02fc3d4
b25ab31
bfabfc6
b25ab31
 
02fc3d4
 
 
 
 
 
 
 
 
 
 
 
b25ab31
 
02fc3d4
b25ab31
 
 
 
 
 
 
 
 
02fc3d4
bfabfc6
02fc3d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25ab31
 
02fc3d4
 
 
b25ab31
 
 
 
 
 
 
 
 
 
 
02fc3d4
 
 
 
 
 
 
 
bfabfc6
02fc3d4
 
 
 
 
 
bfabfc6
 
02fc3d4
 
 
 
 
bfabfc6
 
02fc3d4
 
 
 
 
 
 
bfabfc6
02fc3d4
 
 
 
 
 
bfabfc6
 
02fc3d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25ab31
 
02fc3d4
b25ab31
 
 
 
 
 
 
 
02fc3d4
b25ab31
 
 
02fc3d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
import numpy as np
import torch
from diffusers import DiffusionPipeline

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Текущая/последняя загруженная модель
if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# Изначально загружаем модель по умолчанию
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    model,
    prompt,
    negative_prompt,
    seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    global model_repo_id, pipe
    
    # Проверяем, нужно ли менять модель
    if model != model_repo_id:
        try:
            # Пробуем загрузить новую модель
            new_pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
            new_pipe = new_pipe.to(device)
            # Если успешно, то обновляем pipe и модель
            pipe = new_pipe
            model_repo_id = model
        except Exception as e:
            raise gr.Error(f"Не удалось загрузить модель {model}. Ошибка: {str(e)}")

    generator = torch.Generator(device=device).manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image App")

        # Вместо выпадающего списка — текстовое поле для ввода модели
        model = gr.Textbox(
            label="Model name or path",
            value="stabilityai/sdxl-turbo",  # Значение по умолчанию
            interactive=True
        )
        
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=True,
        )
        
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=42,
        )

        guidance_scale = gr.Slider(
            label="Guidance scale",
            minimum=0.0,
            maximum=10.0,
            step=0.1,
            value=7.0,
        )

        num_inference_steps = gr.Slider(
            label="Number of inference steps",
            minimum=1,
            maximum=50,
            step=1,
            value=20,
        )
        
        run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model,
            prompt,
            negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()