Spaces:
Running
Running
File size: 4,391 Bytes
b25ab31 02fc3d4 58ba00e b25ab31 bfabfc6 b25ab31 8897d33 58ba00e 02fc3d4 58ba00e 02fc3d4 b25ab31 02fc3d4 b25ab31 02fc3d4 bfabfc6 58ba00e 02fc3d4 58ba00e 02fc3d4 b25ab31 02fc3d4 b25ab31 58ba00e b25ab31 02fc3d4 5304a9d 02fc3d4 58ba00e 02fc3d4 bfabfc6 02fc3d4 bfabfc6 02fc3d4 58ba00e 02fc3d4 bfabfc6 02fc3d4 b25ab31 02fc3d4 b25ab31 02fc3d4 b25ab31 02fc3d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "CompVis/stable-diffusion-v1-4" # Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# Изначально загружаем модель по умолчанию (как в исходном коде)
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
model,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
global model_repo_id, pipe
# Если пользователь ввёл новую модель, пробуем загрузить
if model != model_repo_id:
try:
new_pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
new_pipe = new_pipe.to(device)
pipe = new_pipe
model_repo_id = model
except Exception as e:
raise gr.Error(f"Не удалось загрузить модель '{model}'.\nОшибка: {e}")
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
# Убрали выпадающее меню, заменили на текстовое поле
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image App")
model = gr.Textbox(
label="Model",
value="stabilityai/sdxl-turbo", # Значение по умолчанию
interactive=True
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|