File size: 4,980 Bytes
b25ab31
02fc3d4
b25ab31
bfabfc6
ce25251
b25ab31
ce25251
b25ab31
ce25251
58ba00e
ce25251
 
02fc3d4
ce25251
 
 
 
 
 
02fc3d4
 
 
b25ab31
 
02fc3d4
b25ab31
 
 
 
 
 
 
 
 
02fc3d4
ce25251
 
02fc3d4
ce25251
 
02fc3d4
ce25251
02fc3d4
 
 
58ba00e
02fc3d4
ce25251
02fc3d4
 
ce25251
 
 
 
 
 
 
 
 
 
 
 
 
02fc3d4
 
b25ab31
 
02fc3d4
 
 
b25ab31
 
 
 
 
 
 
 
 
 
 
ce25251
02fc3d4
 
5304a9d
ce25251
02fc3d4
 
58ba00e
02fc3d4
 
 
 
 
 
bfabfc6
ce25251
02fc3d4
 
 
 
 
bfabfc6
ce25251
02fc3d4
 
 
 
 
 
 
ce25251
02fc3d4
 
 
 
 
 
bfabfc6
 
02fc3d4
 
 
 
 
 
 
ce25251
 
02fc3d4
 
 
 
 
 
 
 
 
ce25251
02fc3d4
 
 
 
 
 
ce25251
02fc3d4
 
 
 
ce25251
 
 
 
 
 
 
 
 
 
 
 
 
 
b25ab31
 
02fc3d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
import numpy as np
import torch
from diffusers import DiffusionPipeline
import re

# Устройство и параметры загрузки модели
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Регулярное выражение для проверки корректности модели
VALID_REPO_ID_REGEX = re.compile(r"^[a-zA-Z0-9._\-]+/[a-zA-Z0-9._\-]+$")

def is_valid_repo_id(repo_id):
    return bool(VALID_REPO_ID_REGEX.match(repo_id)) and not repo_id.endswith(('-', '.'))

# Изначально загружаем модель по умолчанию
model_repo_id = "CompVis/stable-diffusion-v1-4"
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    model,
    prompt,
    negative_prompt,
    seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    global model_repo_id, pipe

    # Проверяем и загружаем новую модель, если она изменена
    if model != model_repo_id:
        if not is_valid_repo_id(model):
            raise gr.Error(f"Некорректный идентификатор модели: '{model}'. Проверьте название.")
        try:
            new_pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device)
            pipe = new_pipe
            model_repo_id = model
        except Exception as e:
            raise gr.Error(f"Не удалось загрузить модель '{model}'.\nОшибка: {e}")

    # Генератор случайных чисел для детерминированности
    generator = torch.Generator(device=device).manual_seed(seed)

    # Генерация изображения
    try:
        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
    except Exception as e:
        raise gr.Error(f"Ошибка при генерации изображения: {e}")

    return image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Text-to-Image App")

        model = gr.Textbox(
            label="Model",
            value="CompVis/stable-diffusion-v1-4",  # Значение по умолчанию
            interactive=True
        )

        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )

        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=True,
        )

        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=42,
        )

        guidance_scale = gr.Slider(
            label="Guidance scale",
            minimum=0.0,
            maximum=10.0,
            step=0.1,
            value=7.0,
        )

        num_inference_steps = gr.Slider(
            label="Number of inference steps",
            minimum=1,
            maximum=50,
            step=1,
            value=20,
        )

        run_button = gr.Button("Run", variant="primary")
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

        gr.Examples(examples=examples, inputs=[prompt])

        run_button.click(
            infer,
            inputs=[
                model,
                prompt,
                negative_prompt,
                seed,
                width,
                height,
                guidance_scale,
                num_inference_steps,
            ],
            outputs=[result, seed],
        )

if __name__ == "__main__":
    demo.launch()