Spaces:
Running
Running
File size: 4,980 Bytes
b25ab31 02fc3d4 b25ab31 bfabfc6 ce25251 b25ab31 ce25251 b25ab31 ce25251 58ba00e ce25251 02fc3d4 ce25251 02fc3d4 b25ab31 02fc3d4 b25ab31 02fc3d4 ce25251 02fc3d4 ce25251 02fc3d4 ce25251 02fc3d4 58ba00e 02fc3d4 ce25251 02fc3d4 ce25251 02fc3d4 b25ab31 02fc3d4 b25ab31 ce25251 02fc3d4 5304a9d ce25251 02fc3d4 58ba00e 02fc3d4 bfabfc6 ce25251 02fc3d4 bfabfc6 ce25251 02fc3d4 ce25251 02fc3d4 bfabfc6 02fc3d4 ce25251 02fc3d4 ce25251 02fc3d4 ce25251 02fc3d4 ce25251 b25ab31 02fc3d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
import numpy as np
import torch
from diffusers import DiffusionPipeline
import re
# Устройство и параметры загрузки модели
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Регулярное выражение для проверки корректности модели
VALID_REPO_ID_REGEX = re.compile(r"^[a-zA-Z0-9._\-]+/[a-zA-Z0-9._\-]+$")
def is_valid_repo_id(repo_id):
return bool(VALID_REPO_ID_REGEX.match(repo_id)) and not repo_id.endswith(('-', '.'))
# Изначально загружаем модель по умолчанию
model_repo_id = "CompVis/stable-diffusion-v1-4"
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
model,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
global model_repo_id, pipe
# Проверяем и загружаем новую модель, если она изменена
if model != model_repo_id:
if not is_valid_repo_id(model):
raise gr.Error(f"Некорректный идентификатор модели: '{model}'. Проверьте название.")
try:
new_pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device)
pipe = new_pipe
model_repo_id = model
except Exception as e:
raise gr.Error(f"Не удалось загрузить модель '{model}'.\nОшибка: {e}")
# Генератор случайных чисел для детерминированности
generator = torch.Generator(device=device).manual_seed(seed)
# Генерация изображения
try:
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
except Exception as e:
raise gr.Error(f"Ошибка при генерации изображения: {e}")
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Text-to-Image App")
model = gr.Textbox(
label="Model",
value="CompVis/stable-diffusion-v1-4", # Значение по умолчанию
interactive=True
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
run_button = gr.Button("Run", variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
gr.Examples(examples=examples, inputs=[prompt])
run_button.click(
infer,
inputs=[
model,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|