Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
model_name = "huggingface/llama-model" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
def chunk_text(text, chunk_size=512): | |
tokens = tokenizer.encode(text, return_tensors="pt", truncation=False) | |
chunks = [tokens[0][i:i + chunk_size] for i in range(0, tokens.size(1), chunk_size)] | |
return chunks | |
def summarize_chunk(chunk, max_length=50): | |
summary_ids = model.generate(chunk.unsqueeze(0), max_length=max_length, min_length=25, length_penalty=2.0, num_beams=4, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
def summarize(text, max_summary_length=50): | |
chunks = chunk_text(text) | |
summaries = [summarize_chunk(chunk, max_summary_length) for chunk in chunks] | |
combined_summary = " ".join(summaries) | |
final_summary = summarize_chunk(tokenizer.encode(combined_summary, return_tensors="pt", truncation=True)[0], max_length=max_summary_length) | |
return final_summary | |
iface = gr.Interface( | |
fn=summarize, | |
inputs=[ | |
gr.inputs.Textbox(lines=10, label="Input Text"), | |
gr.inputs.Slider(minimum=10, maximum=100, default=50, label="Max Summary Length (Optional)") | |
], | |
outputs="text", | |
title="Concise Text Summarization with Llama" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |