File size: 3,960 Bytes
8395863
 
 
8271835
776dd3c
8271835
36945ed
fc1d3e9
 
 
 
36945ed
8395863
 
fc1d3e9
8395863
660142e
 
 
 
c0f6a4b
3a6ce4c
 
660142e
 
 
3a6ce4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660142e
8395863
 
 
 
 
 
 
 
 
 
3a6ce4c
 
660142e
8271835
 
 
8395863
660142e
8395863
660142e
adda212
8395863
660142e
8395863
660142e
 
 
 
 
776dd3c
3a6ce4c
660142e
8271835
3a6ce4c
 
 
621f2db
3a6ce4c
8271835
3a6ce4c
83d61e1
776dd3c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import streamlit as st
import cv2
import numpy as np
import torch
from torchvision import transforms, models
from PIL import Image
from TranSalNet_Res import TranSalNet
import torch.nn as nn
from utils.data_process import preprocess_img, postprocess_img

device = torch.device('cpu')
model = TranSalNet()
model.load_state_dict(torch.load('pretrained_models/TranSalNet_Res.pth', map_location=torch.device('cpu')))
model.to(device)
model.eval()

def count_and_label_red_patches(heatmap, threshold=200):
    red_mask = heatmap[:, :, 2] > threshold
    _, labels, stats, _ = cv2.connectedComponentsWithStats(red_mask.astype(np.uint8), connectivity=8)
    num_red_patches = labels.max()

    original_image = np.array(image)

    for i in range(1, num_red_patches + 1):
        patch_mask = (labels == i)
        patch_centroid_x, patch_centroid_y = int(stats[i, cv2.CC_STAT_LEFT] + stats[i, cv2.CC_STAT_WIDTH] / 2), int(stats[i, cv2.CC_STAT_TOP] + stats[i, cv2.CC_STAT_HEIGHT] / 2)
        radius = 20  # Adjust the following variable to manage the circle image
        circle_color = (0, 0, 0)  # The circle is black adjust the following to change the color
        cv2.circle(original_image, (patch_centroid_x, patch_centroid_y), radius, circle_color, -1)  # Draw the circle

        # Lines code
        for j in range(i + 1, num_red_patches + 1):
            patch_mask_j = (labels == j)
            patch_centroid_x_j, patch_centroid_y_j = int(stats[j, cv2.CC_STAT_LEFT] + stats[j, cv2.CC_STAT_WIDTH] / 2), int(stats[j, cv2.CC_STAT_TOP] + stats[j, cv2.CC_STAT_HEIGHT] / 2)
            line_color = (0, 0, 0)  # Ajdust the following to manage the line color
            cv2.line(original_image, (patch_centroid_x, patch_centroid_y), (patch_centroid_x_j, patch_centroid_y_j), line_color, 2) # Line

        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = 1
        font_color = (255, 255, 255)
        line_type = cv2.LINE_AA
        cv2.putText(original_image, str(i), (patch_centroid_x - 10, patch_centroid_y + 10), font, font_scale, font_color, 2, line_type)

    return original_image, num_red_patches

st.title('Saliency Detection App')
st.write('Upload an image for saliency detection:')
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

if uploaded_image:
    image = Image.open(uploaded_image)
    st.image(image, caption='Uploaded Image', use_column_width=True)

    if st.button('Detect Saliency'):
        img = image.resize((384, 288))
        img = np.array(img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)  # Convert to BGR color space
        img = np.array(img) / 255.
        img = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0)
        img = torch.from_numpy(img)
        img = img.type(torch.FloatTensor).to(device)

        pred_saliency = model(img).squeeze().detach().numpy()

        heatmap = (pred_saliency * 255).astype(np.uint8)
        heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)  # Use a blue colormap (JET)

        heatmap = cv2.resize(heatmap, (image.width, image.height))

        enhanced_image = np.array(image)
        b, g, r = cv2.split(enhanced_image)
        clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
        b_enhanced = clahe.apply(b)
        enhanced_image = cv2.merge((b_enhanced, g, r))

        alpha = 0.7
        blended_img = cv2.addWeighted(enhanced_image, 1 - alpha, heatmap, alpha, 0)

        original_image, num_red_patches = count_and_label_red_patches(heatmap)

        st.image(original_image, caption=f'Image with {num_red_patches} Red Patches', use_column_width=True, channels='RGB')

        st.image(blended_img, caption='Blended Image', use_column_width=True, channels='BGR')

        # Create a dir with the name example to save
        cv2.imwrite('example/result15.png', blended_img, [int(cv2.IMWRITE_JPEG_QUALITY), 200])
        st.success('Saliency detection complete. Result saved as "example/result15.png".')