VisAt / utils /TransformerEncoder.py
Tanzeer's picture
Upload 15 files
8395863
raw
history blame
4.63 kB
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import logging
import math
from os.path import join as pjoin
import torch
import torch.nn as nn
import numpy as np
from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm
from torch.nn.modules.utils import _pair
from scipy import ndimage
ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu}
class Attention(nn.Module):
def __init__(self, config):
super(Attention, self).__init__()
self.num_attention_heads = config["num_heads"] # 12
self.attention_head_size = int(config['hidden_size'] / self.num_attention_heads) # 42
self.all_head_size = self.num_attention_heads * self.attention_head_size # 12*42=504
self.query = Linear(config['hidden_size'], self.all_head_size) # (512, 504)
self.key = Linear(config['hidden_size'], self.all_head_size)
self.value = Linear(config['hidden_size'], self.all_head_size)
# self.out = Linear(config['hidden_size'], config['hidden_size'])
self.out = Linear(self.all_head_size, config['hidden_size'])
self.attn_dropout = Dropout(config["attention_dropout_rate"])
self.proj_dropout = Dropout(config["attention_dropout_rate"])
self.softmax = Softmax(dim=-1)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
attention_probs = self.softmax(attention_scores)
attention_probs = self.attn_dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
attention_output = self.out(context_layer)
attention_output = self.proj_dropout(attention_output)
return attention_output
class Mlp(nn.Module):
def __init__(self, config):
super(Mlp, self).__init__()
self.fc1 = Linear(config['hidden_size'], config["mlp_dim"])
self.fc2 = Linear(config["mlp_dim"], config['hidden_size'])
self.act_fn = ACT2FN["gelu"]
self.dropout = Dropout(config["dropout_rate"])
self._init_weights()
def _init_weights(self):
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.normal_(self.fc1.bias, std=1e-6)
nn.init.normal_(self.fc2.bias, std=1e-6)
def forward(self, x):
x = self.fc1(x)
x = self.act_fn(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class Block(nn.Module):
def __init__(self, config):
super(Block, self).__init__()
self.flag = config['num_heads']
self.hidden_size = config['hidden_size']
self.ffn_norm = LayerNorm(config['hidden_size'], eps=1e-6)
self.ffn = Mlp(config)
self.attn = Attention(config)
self.attention_norm = LayerNorm(config['hidden_size'], eps=1e-6)
def forward(self, x):
h = x
x = self.attention_norm(x)
x = self.attn(x)
x = x + h
h = x
x = self.ffn_norm(x)
x = self.ffn(x)
x = x + h
return x
class Encoder(nn.Module):
def __init__(self, config):
super(Encoder, self).__init__()
self.layer = nn.ModuleList()
self.encoder_norm = LayerNorm(config['hidden_size'], eps=1e-6)
for _ in range(config["num_layers"]):
layer = Block(config)
self.layer.append(copy.deepcopy(layer))
def forward(self, hidden_states):
for layer_block in self.layer:
hidden_states = layer_block(hidden_states)
encoded = self.encoder_norm(hidden_states)
return encoded