scify-demo / app.py
ykl7's picture
test retriever post requests
0b633df
raw
history blame
9.88 kB
import streamlit as st
import random
import time
import hmac
import os
import json
import requests
from llm_reasoner import LLMReasoner
from prompts import templates
from typing import Any
from string import Template
st.header(" Scientific Claim Verification ")
st.caption("Team UMBC-SBU-UT")
def safe_parse_json(model_answer):
""".."""
try:
return json.loads(model_answer)
except json.JSONDecodeError as e:
logger.error("Failed to parse JSON: %s", e)
return None
def check_password():
"""Returns `True` if the user had a correct password."""
def login_form():
"""Form with widgets to collect user information"""
with st.form("Credentials"):
st.text_input("Username", key="username")
st.text_input("Password", type="password", key="password")
st.form_submit_button("Log in", on_click=password_entered)
def password_entered():
"""Checks whether a password entered by the user is correct."""
stored_password = os.getenv(st.session_state["username"])
if stored_password == st.session_state["password"]:
st.session_state["password_correct"] = True
del st.session_state["password"] # Remove credentials from session
del st.session_state["username"]
return
# If authentication fails
st.session_state["password_correct"] = False
# Return True if the username + password is validated.
if st.session_state.get("password_correct", False):
return True
# Show inputs for username + password.
login_form()
if "password_correct" in st.session_state:
st.error("πŸ˜• User not known or password incorrect")
return False
def select_models():
"""Returns only when a valid option is selected from both dropdowns."""
#placeholders
retriever_options = ["Choose one...", "BM25 Retriever", "Off-the-shelf Retriever", "Finetuned Retriever", "No Retriever"]
reasoner_options = ["Choose one...", "Claude Sonnet", "GPT-4o", "o3-mini"]
#selectboxes
retriever = st.selectbox(
"Select the Retriever Model",
retriever_options,
key="retriever"
)
reasoner = st.selectbox(
"Select the Reasoner Model",
reasoner_options,
key="reasoner"
)
#next button
if st.button("Next"):
# Check that both selections are not the placeholder.
if retriever == "Choose one..." or reasoner == "Choose one...":
st.info("Please select both a retriever and a reasoner.")
return None, None
else:
# Store the valid selections in session state
st.session_state["selected_models"] = (retriever, reasoner)
return retriever, reasoner
else:
st.info("Click 'Next' once you have made your selections.")
return None, None
if not check_password():
st.stop()
if "selected_models" not in st.session_state:
selected_retriever, selected_reasoner = select_models()
# If valid selections are returned, store them and reset the change flag.
if selected_retriever is not None and selected_reasoner is not None:
st.session_state.selected_models = (selected_retriever, selected_reasoner)
st.rerun()
else:
st.stop() # Halt further execution until valid selections are made.
else:
selected_retriever, selected_reasoner = st.session_state.selected_models
#START OF AGENTIC DEMO
column1, column2 = st.columns(2)
column1.caption(f"Retriever Selected: {selected_retriever}")
column2.caption(f"Reasoner Selected: {selected_reasoner}")
if st.button("Change Selection", key="change_selection_btn"):
st.session_state.pop("selected_models", None)
st.session_state.pop("retriever", None)
st.session_state.pop("reasoner", None)
st.session_state.messages = [{"role": "assistant", "content": "Let's start verifying the claims here! πŸ‘‡"}]
st.rerun()
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "Let's start verifying the claims here! πŸ‘‡"}]
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def retriever(query: str, selected_retriever: str):
"""Simulate a 'retriever' step, searching for relevant information."""
with st.chat_message("assistant"):
placeholder = st.empty()
text=""
if selected_retriever == "BM25 Retriever":
message = "Using the BM25 retriever to search for documents related to your query..."
retriever_endpoint = "bm25"
elif selected_retriever == "Off-the-shelf Retriever":
message = "Using the off-the-shelf retriever to fetch detailed documents relevant to your query..."
retriever_endpoint = "ots"
elif selected_retriever == "Finetuned Retriever":
message = "Using the finetuned retriever to fetch detailed documents relevant to your query..."
retriever_endpoint = "ft"
else:
message = "No retriever selected. Skipping document retrieval."
return ""
headers = {
'Content-Type': 'application/json',
}
json_data = {
'claim': query,
}
url = "http://130.245.163.20"
port = "80"
response = requests.post(f'{url}:{port}/{retriever_endpoint}', headers=headers, json=json_data)
documents = response.json()["Documents"]
k = 3
topk_documents = documents[:k]
corpus = '\n\n'.join(topk_documents)
for chunk in message.split():
text += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
placeholder.markdown(text + "β–Œ")
placeholder.markdown(text)
# You could return retrieved info here.
return corpus
def reasoner(query: str, documents: list[str], llm_client: Any):
"""Simulate a 'reasoner' step, thinking about how to answer."""
with st.chat_message("assistant"):
placeholder = st.empty()
text=""
if selected_reasoner == "Claude Sonnet":
message = "Using Claude Sonnet to reason and verify the claim..."
elif selected_reasoner == "GPT-4o":
message = "Using GPT-4o to analyze and verify the claim in detail..."
elif selected_reasoner == "o3-mini":
message = "Using o3-mini to quickly analyze the claim..."
if not documents or len(documents) == 0:
prompt_template = Template(templates["no_evidence"])
prompt = prompt_template.substitute(claim=query)
print(prompt)
# prompt = templates["no_evidence"].format(claim=query)
else:
# TODO: fix prompt call to include retrieved documents
prompt_template = Template(templates["with_evidence"])
prompt = prompt_template.substitute(claim=query, corpus=documents)
# prompt = templates["no_evidence"].format(claim=query, corpus=documents)
llm_response = llm_client.run_inference(prompt)
answer_dict = safe_parse_json(llm_response)
decision = answer_dict.get("decision", "")
reasoning = answer_dict.get("reasoning", "")
for chunk in message.split():
text += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
placeholder.markdown(text + "β–Œ")
placeholder.markdown(text)
# You could return reasoning info here.
return reasoning, decision
# Accept user input
if prompt := st.chat_input("Type here"):
# Add user message to chat history
prompt = prompt + " \n"+ " \n"+ f"Retriever: {selected_retriever}, Reasoner: {selected_reasoner}"
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
options = {}
options["max_tokens"] = 500
options["temperature"] = 0.0
if selected_reasoner == "Claude Sonnet":
api_key = os.getenv("claude_key")
options["model_family"] = "Anthropic"
options["model_name"] = "claude-3-5-sonnet-20240620"
elif selected_reasoner == "GPT-4o":
api_key = os.getenv("openai_key")
options["model_family"] = "OpenAI"
options["model_name"] = "gpt-4o-2024-11-20"
elif selected_reasoner == "o3-mini":
api_key = os.getenv("openai_key")
options["model_family"] = "OpenAI"
options["model_name"] = "o3-mini-2025-01-31"
options["API_KEY"] = api_key
llm_client = LLMReasoner(options)
retrieved_documents = retriever(prompt, selected_retriever)
reasoning, decision = reasoner(prompt, retrieved_documents, llm_client)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
if decision.lower() == 'support':
assistant_response = f'The claim is CORRECT because {reasoning}'
elif decision.lower() == 'contradict':
assistant_response = f'The claim is INCORRECT because {reasoning}'
# Simulate stream of response with milliseconds delay
for chunk in assistant_response.split():
full_response += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
message_placeholder.markdown(full_response + "β–Œ")
message_placeholder.markdown(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})