File size: 10,134 Bytes
de0db89 3518b5f de0db89 0b99dda 3518b5f de0db89 8a49030 35bc545 3518b5f acc7f4b de0db89 77248af de0db89 cfafe9a de0db89 1f8900f de0db89 3518b5f de0db89 3518b5f acc7f4b 967b314 66bb520 967b314 f17ed04 66bb520 41e0af4 ed67914 f17ed04 967b314 16dd569 de0db89 7166f76 de0db89 7166f76 4434e29 920c999 60180ea 5f8640f de0db89 7166f76 de0db89 77248af de0db89 77248af de0db89 3518b5f 7166f76 3518b5f 649234d 3518b5f de0db89 66bb520 ad3bf4c 66bb520 920c999 cc5a61c b2ad618 8e214b7 629ceb5 ad3bf4c 8e214b7 b2ad618 8e214b7 b2ad618 8e214b7 6f034e3 ceeeb32 6f034e3 1bbb97c e0e747f 6d5f395 6f034e3 ceeeb32 6f034e3 6d5f395 6f034e3 e0e747f 8dd6063 8a49030 1dab2a9 8a49030 e0e747f 41e0af4 e0e747f 6d5f395 6f034e3 e0e747f 6d5f395 6f034e3 399bb13 6f034e3 399bb13 6f034e3 399bb13 6f034e3 399bb13 6f034e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training import train_state
import optax
from diffusers import FlaxStableDiffusionPipeline, FlaxUNet2DConditionModel
from diffusers.schedulers import FlaxPNDMScheduler
from datasets import load_dataset
from tqdm.auto import tqdm
import os
import pickle
from PIL import Image
import numpy as np
from inspect import signature
# Custom Scheduler
class CustomFlaxPNDMScheduler(FlaxPNDMScheduler):
def add_noise(self, state, original_samples, noise, timesteps):
timesteps = timesteps.astype(jnp.int32)
return super().add_noise(state, original_samples, noise, timesteps)
# Set up cache directories
cache_dir = "/tmp/huggingface_cache"
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
os.makedirs(model_cache_dir, exist_ok=True)
print(f"Cache directory: {cache_dir}")
print(f"Model cache directory: {model_cache_dir}")
def filter_dict(dict_to_filter, target_callable):
"""Filter a dictionary to only include keys that are valid parameters for the target callable."""
valid_params = signature(target_callable).parameters.keys()
return {k: v for k, v in dict_to_filter.items() if k in valid_params}
# Function to load or download the model
def get_model(model_id, revision):
model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl")
print(f"Model cache file: {model_cache_file}")
if os.path.exists(model_cache_file):
print("Loading model from cache...")
with open(model_cache_file, 'rb') as f:
return pickle.load(f)
else:
print("Downloading model...")
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
model_id,
revision=revision,
dtype=jnp.float32,
)
with open(model_cache_file, 'wb') as f:
pickle.dump((pipeline, params), f)
return pipeline, params
# Load the pre-trained model
model_id = "CompVis/stable-diffusion-v1-4"
pipeline, params = get_model(model_id, "flax")
# Use custom scheduler
custom_scheduler = CustomFlaxPNDMScheduler.from_config(pipeline.scheduler.config)
pipeline.scheduler = custom_scheduler
# Extract UNet from pipeline
unet = pipeline.unet
# Print UNet configuration
print("UNet configuration:")
print(unet.config)
# Adjust the input layer of the UNet
def adjust_unet_input_layer(params):
if 'unet' in params:
unet_params = params['unet']
else:
unet_params = params
if 'conv_in' not in unet_params:
print("Warning: 'conv_in' not found in UNet params. Skipping input layer adjustment.")
return params
conv_in_weight = unet_params['conv_in']['kernel']
print(f"Original conv_in weight shape: {conv_in_weight.shape}")
if conv_in_weight.shape[2] != 4:
new_conv_in_weight = jnp.zeros((3, 3, 4, 320), dtype=jnp.float32)
new_conv_in_weight = new_conv_in_weight.at[:, :, :3, :].set(conv_in_weight[:, :, :3, :])
unet_params['conv_in']['kernel'] = new_conv_in_weight
print(f"New conv_in weight shape: {unet_params['conv_in']['kernel'].shape}")
if 'unet' in params:
params['unet'] = unet_params
else:
params = unet_params
return params
params = adjust_unet_input_layer(params)
# Load and preprocess your dataset
def preprocess_images(examples):
def process_image(image):
if isinstance(image, str):
if not image.lower().endswith('.jpg') and not image.lower().endswith('.jpeg'):
return None
image = Image.open(image)
if not isinstance(image, Image.Image):
return None
image = image.convert("RGB").resize((512, 512))
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(2, 0, 1) # Change to channel-first format
return image
processed = [process_image(img) for img in examples["image"]]
return {"pixel_values": [img for img in processed if img is not None]}
# Load dataset from Hugging Face
dataset_name = "uruguayai/montevideo"
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")
print(f"Dataset name: {dataset_name}")
print(f"Dataset cache file: {dataset_cache_file}")
if os.path.exists(dataset_cache_file):
print("Loading dataset from cache...")
with open(dataset_cache_file, 'rb') as f:
processed_dataset = pickle.load(f)
else:
print("Processing dataset...")
dataset = load_dataset(dataset_name)
processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names)
processed_dataset = processed_dataset.filter(lambda example: len(example['pixel_values']) > 0)
with open(dataset_cache_file, 'wb') as f:
pickle.dump(processed_dataset, f)
print(f"Processed dataset size: {len(processed_dataset)}")
# Print sample input shape
sample_batch = next(iter(processed_dataset.batch(1)))
print(f"Sample batch keys: {sample_batch.keys()}")
print(f"Sample pixel_values type: {type(sample_batch['pixel_values'])}")
print(f"Sample pixel_values length: {len(sample_batch['pixel_values'])}")
if len(sample_batch['pixel_values']) > 0:
print(f"Sample pixel_values[0] shape: {np.array(sample_batch['pixel_values'][0]).shape}")
# Training function
def train_step(state, batch, rng):
def compute_loss(unet_params, pixel_values, rng):
pixel_values = jnp.array(pixel_values, dtype=jnp.float32)
if pixel_values.ndim == 3:
pixel_values = jnp.expand_dims(pixel_values, axis=0) # Add batch dimension if needed
print(f"pixel_values shape in compute_loss: {pixel_values.shape}")
# Use the VAE from params
latents = pipeline.vae.apply(
{"params": params["vae"]},
pixel_values,
method=pipeline.vae.encode
).latent_dist.sample(rng)
latents = latents * jnp.float32(0.18215)
print(f"latents shape: {latents.shape}")
noise = jax.random.normal(rng, latents.shape, dtype=jnp.float32)
timesteps = jax.random.randint(
rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps
)
noisy_latents = pipeline.scheduler.add_noise(
pipeline.scheduler.create_state(),
original_samples=latents,
noise=noise,
timesteps=timesteps
)
encoder_hidden_states = jax.random.normal(
rng,
(latents.shape[0], pipeline.text_encoder.config.hidden_size),
dtype=jnp.float32
)
print(f"noisy_latents shape: {noisy_latents.shape}")
print(f"timesteps shape: {timesteps.shape}")
print(f"encoder_hidden_states shape: {encoder_hidden_states.shape}")
# Use the state's apply_fn (which should be the adjusted UNet)
model_output = state.apply_fn(
{"params": unet_params},
noisy_latents,
jnp.array(timesteps, dtype=jnp.int32),
encoder_hidden_states,
train=True,
).sample
return jnp.mean((model_output - noise) ** 2)
grad_fn = jax.grad(compute_loss, argnums=0, allow_int=True)
rng, step_rng = jax.random.split(rng)
# Ensure we're passing the correct structure to grad_fn and compute_loss
unet_params = state.params["params"] if "params" in state.params else state.params
grads = grad_fn(unet_params, batch["pixel_values"], step_rng)
loss = compute_loss(unet_params, batch["pixel_values"], step_rng)
# Update the state with the correct structure
new_params = optax.apply_updates(state.params, grads)
state = state.replace(params=new_params)
return state, loss
# Initialize training state
learning_rate = 1e-5
optimizer = optax.adam(learning_rate)
float32_params = jax.tree_util.tree_map(lambda x: x.astype(jnp.float32) if x.dtype != jnp.int32 else x, params)
# Create a new UNet with the adjusted parameters
unet_config = dict(unet.config)
filtered_unet_config = filter_dict(unet_config, FlaxUNet2DConditionModel.__init__)
print("Filtered UNet config keys:", filtered_unet_config.keys())
adjusted_unet = FlaxUNet2DConditionModel(**filtered_unet_config)
adjusted_params = adjusted_unet.init(jax.random.PRNGKey(0), jnp.ones((1, 4, 64, 64)), jnp.ones((1,)), jnp.ones((1, 77, 768)))
adjusted_params = adjust_unet_input_layer(adjusted_params) # Adjust the input layer
# Adjust the state creation
state = train_state.TrainState.create(
apply_fn=adjusted_unet.apply,
params={"params": adjusted_params}, # Wrap params in a dict with "params" key
tx=optimizer,
)
# Training loop
num_epochs = 3
batch_size = 1
rng = jax.random.PRNGKey(0)
# Training loop
num_epochs = 3
batch_size = 1
rng = jax.random.PRNGKey(0)
for epoch in range(num_epochs):
epoch_loss = 0
num_batches = 0
num_errors = 0
for batch in tqdm(processed_dataset.batch(batch_size)):
try:
batch['pixel_values'] = jnp.array(batch['pixel_values'][0], dtype=jnp.float32)
rng, step_rng = jax.random.split(rng)
state, loss = train_step(state, batch, step_rng)
epoch_loss += loss
num_batches += 1
if num_batches % 10 == 0:
jax.clear_caches()
print(f"Processed {num_batches} batches. Current loss: {loss}")
except Exception as e:
num_errors += 1
print(f"Error processing batch: {e}")
continue
if num_batches > 0:
avg_loss = epoch_loss / num_batches
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}, Errors: {num_errors}")
else:
print(f"Epoch {epoch+1}/{num_epochs}, No valid batches processed, Errors: {num_errors}")
jax.clear_caches()
# Save the fine-tuned model
output_dir = "/tmp/montevideo_fine_tuned_model"
os.makedirs(output_dir, exist_ok=True)
adjusted_unet.save_pretrained(output_dir, params=state.params["params"])
print(f"Model saved to {output_dir}") |