File size: 10,134 Bytes
de0db89
 
3518b5f
de0db89
 
0b99dda
3518b5f
de0db89
 
 
 
 
 
8a49030
35bc545
3518b5f
 
acc7f4b
 
 
 
de0db89
77248af
de0db89
 
 
 
 
 
cfafe9a
 
 
 
 
 
 
 
 
 
 
de0db89
 
 
 
 
 
 
 
 
 
1f8900f
de0db89
 
3518b5f
de0db89
 
 
 
 
 
 
 
 
3518b5f
 
acc7f4b
 
967b314
 
 
66bb520
 
 
 
967b314
 
f17ed04
 
 
 
 
 
 
 
 
 
66bb520
41e0af4
ed67914
 
f17ed04
 
 
 
 
 
 
 
967b314
 
 
16dd569
de0db89
 
 
 
7166f76
 
de0db89
 
7166f76
4434e29
920c999
60180ea
5f8640f
de0db89
7166f76
 
de0db89
77248af
 
de0db89
 
77248af
de0db89
 
3518b5f
 
 
 
 
 
 
 
7166f76
3518b5f
 
649234d
3518b5f
de0db89
66bb520
 
ad3bf4c
 
 
 
 
66bb520
920c999
cc5a61c
b2ad618
8e214b7
629ceb5
 
ad3bf4c
8e214b7
b2ad618
8e214b7
b2ad618
8e214b7
 
 
6f034e3
 
ceeeb32
6f034e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bbb97c
e0e747f
6d5f395
6f034e3
 
 
 
 
 
 
ceeeb32
6f034e3
 
 
6d5f395
 
 
 
 
 
 
 
 
6f034e3
 
 
 
 
 
e0e747f
 
8dd6063
8a49030
 
 
1dab2a9
8a49030
e0e747f
41e0af4
e0e747f
6d5f395
6f034e3
e0e747f
6d5f395
6f034e3
 
 
 
 
 
 
 
399bb13
 
 
 
 
6f034e3
 
 
399bb13
6f034e3
399bb13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f034e3
 
 
 
 
 
399bb13
6f034e3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training import train_state
import optax
from diffusers import FlaxStableDiffusionPipeline, FlaxUNet2DConditionModel
from diffusers.schedulers import FlaxPNDMScheduler
from datasets import load_dataset
from tqdm.auto import tqdm
import os
import pickle
from PIL import Image
import numpy as np
from inspect import signature

# Custom Scheduler
class CustomFlaxPNDMScheduler(FlaxPNDMScheduler):
    def add_noise(self, state, original_samples, noise, timesteps):
        timesteps = timesteps.astype(jnp.int32)
        return super().add_noise(state, original_samples, noise, timesteps)

# Set up cache directories
cache_dir = "/tmp/huggingface_cache"
model_cache_dir = os.path.join(cache_dir, "stable_diffusion_model")
os.makedirs(model_cache_dir, exist_ok=True)

print(f"Cache directory: {cache_dir}")
print(f"Model cache directory: {model_cache_dir}")



def filter_dict(dict_to_filter, target_callable):
    """Filter a dictionary to only include keys that are valid parameters for the target callable."""
    valid_params = signature(target_callable).parameters.keys()
    return {k: v for k, v in dict_to_filter.items() if k in valid_params}





# Function to load or download the model
def get_model(model_id, revision):
    model_cache_file = os.path.join(model_cache_dir, f"{model_id.replace('/', '_')}_{revision}.pkl")
    print(f"Model cache file: {model_cache_file}")
    if os.path.exists(model_cache_file):
        print("Loading model from cache...")
        with open(model_cache_file, 'rb') as f:
            return pickle.load(f)
    else:
        print("Downloading model...")
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            model_id, 
            revision=revision,
            dtype=jnp.float32,
        )
        with open(model_cache_file, 'wb') as f:
            pickle.dump((pipeline, params), f)
        return pipeline, params

# Load the pre-trained model
model_id = "CompVis/stable-diffusion-v1-4"
pipeline, params = get_model(model_id, "flax")

# Use custom scheduler
custom_scheduler = CustomFlaxPNDMScheduler.from_config(pipeline.scheduler.config)
pipeline.scheduler = custom_scheduler

# Extract UNet from pipeline
unet = pipeline.unet

# Print UNet configuration
print("UNet configuration:")
print(unet.config)

# Adjust the input layer of the UNet
def adjust_unet_input_layer(params):
    if 'unet' in params:
        unet_params = params['unet']
    else:
        unet_params = params

    if 'conv_in' not in unet_params:
        print("Warning: 'conv_in' not found in UNet params. Skipping input layer adjustment.")
        return params

    conv_in_weight = unet_params['conv_in']['kernel']
    print(f"Original conv_in weight shape: {conv_in_weight.shape}")
    if conv_in_weight.shape[2] != 4:
        new_conv_in_weight = jnp.zeros((3, 3, 4, 320), dtype=jnp.float32)
        new_conv_in_weight = new_conv_in_weight.at[:, :, :3, :].set(conv_in_weight[:, :, :3, :])
        unet_params['conv_in']['kernel'] = new_conv_in_weight
    print(f"New conv_in weight shape: {unet_params['conv_in']['kernel'].shape}")

    if 'unet' in params:
        params['unet'] = unet_params
    else:
        params = unet_params

    return params

params = adjust_unet_input_layer(params)

# Load and preprocess your dataset
def preprocess_images(examples):
    def process_image(image):
        if isinstance(image, str):
            if not image.lower().endswith('.jpg') and not image.lower().endswith('.jpeg'):
                return None
            image = Image.open(image)
        if not isinstance(image, Image.Image):
            return None
        image = image.convert("RGB").resize((512, 512))
        image = np.array(image).astype(np.float32) / 255.0
        image = image.transpose(2, 0, 1)  # Change to channel-first format
        return image

    processed = [process_image(img) for img in examples["image"]]
    return {"pixel_values": [img for img in processed if img is not None]}

# Load dataset from Hugging Face
dataset_name = "uruguayai/montevideo"
dataset_cache_file = os.path.join(cache_dir, "montevideo_dataset.pkl")

print(f"Dataset name: {dataset_name}")
print(f"Dataset cache file: {dataset_cache_file}")

if os.path.exists(dataset_cache_file):
    print("Loading dataset from cache...")
    with open(dataset_cache_file, 'rb') as f:
        processed_dataset = pickle.load(f)
else:
    print("Processing dataset...")
    dataset = load_dataset(dataset_name)
    processed_dataset = dataset["train"].map(preprocess_images, batched=True, remove_columns=dataset["train"].column_names)
    processed_dataset = processed_dataset.filter(lambda example: len(example['pixel_values']) > 0)
    with open(dataset_cache_file, 'wb') as f:
        pickle.dump(processed_dataset, f)

print(f"Processed dataset size: {len(processed_dataset)}")

# Print sample input shape
sample_batch = next(iter(processed_dataset.batch(1)))
print(f"Sample batch keys: {sample_batch.keys()}")
print(f"Sample pixel_values type: {type(sample_batch['pixel_values'])}")
print(f"Sample pixel_values length: {len(sample_batch['pixel_values'])}")
if len(sample_batch['pixel_values']) > 0:
    print(f"Sample pixel_values[0] shape: {np.array(sample_batch['pixel_values'][0]).shape}")

# Training function
def train_step(state, batch, rng):
    def compute_loss(unet_params, pixel_values, rng):
        pixel_values = jnp.array(pixel_values, dtype=jnp.float32)
        if pixel_values.ndim == 3:
            pixel_values = jnp.expand_dims(pixel_values, axis=0)  # Add batch dimension if needed
        print(f"pixel_values shape in compute_loss: {pixel_values.shape}")
        
        # Use the VAE from params
        latents = pipeline.vae.apply(
            {"params": params["vae"]},
            pixel_values,
            method=pipeline.vae.encode
        ).latent_dist.sample(rng)
        latents = latents * jnp.float32(0.18215)
        print(f"latents shape: {latents.shape}")

        noise = jax.random.normal(rng, latents.shape, dtype=jnp.float32)
        
        timesteps = jax.random.randint(
            rng, (latents.shape[0],), 0, pipeline.scheduler.config.num_train_timesteps
        )
        
        noisy_latents = pipeline.scheduler.add_noise(
            pipeline.scheduler.create_state(),
            original_samples=latents,
            noise=noise,
            timesteps=timesteps
        )
        
        encoder_hidden_states = jax.random.normal(
            rng, 
            (latents.shape[0], pipeline.text_encoder.config.hidden_size),
            dtype=jnp.float32
        )
        
        print(f"noisy_latents shape: {noisy_latents.shape}")
        print(f"timesteps shape: {timesteps.shape}")
        print(f"encoder_hidden_states shape: {encoder_hidden_states.shape}")
        
        # Use the state's apply_fn (which should be the adjusted UNet)
        model_output = state.apply_fn(
            {"params": unet_params},
            noisy_latents,
            jnp.array(timesteps, dtype=jnp.int32),
            encoder_hidden_states,
            train=True,
        ).sample
        
        return jnp.mean((model_output - noise) ** 2)

    grad_fn = jax.grad(compute_loss, argnums=0, allow_int=True)
    rng, step_rng = jax.random.split(rng)
    
    # Ensure we're passing the correct structure to grad_fn and compute_loss
    unet_params = state.params["params"] if "params" in state.params else state.params
    grads = grad_fn(unet_params, batch["pixel_values"], step_rng)
    loss = compute_loss(unet_params, batch["pixel_values"], step_rng)
    
    # Update the state with the correct structure
    new_params = optax.apply_updates(state.params, grads)
    state = state.replace(params=new_params)
    
    return state, loss

# Initialize training state
learning_rate = 1e-5
optimizer = optax.adam(learning_rate)
float32_params = jax.tree_util.tree_map(lambda x: x.astype(jnp.float32) if x.dtype != jnp.int32 else x, params)

# Create a new UNet with the adjusted parameters
unet_config = dict(unet.config)
filtered_unet_config = filter_dict(unet_config, FlaxUNet2DConditionModel.__init__)

print("Filtered UNet config keys:", filtered_unet_config.keys())

adjusted_unet = FlaxUNet2DConditionModel(**filtered_unet_config)
adjusted_params = adjusted_unet.init(jax.random.PRNGKey(0), jnp.ones((1, 4, 64, 64)), jnp.ones((1,)), jnp.ones((1, 77, 768)))
adjusted_params = adjust_unet_input_layer(adjusted_params)  # Adjust the input layer

# Adjust the state creation
state = train_state.TrainState.create(
    apply_fn=adjusted_unet.apply,
    params={"params": adjusted_params},  # Wrap params in a dict with "params" key
    tx=optimizer,
)

# Training loop
num_epochs = 3
batch_size = 1
rng = jax.random.PRNGKey(0)

# Training loop
num_epochs = 3
batch_size = 1
rng = jax.random.PRNGKey(0)

for epoch in range(num_epochs):
    epoch_loss = 0
    num_batches = 0
    num_errors = 0
    for batch in tqdm(processed_dataset.batch(batch_size)):
        try:
            batch['pixel_values'] = jnp.array(batch['pixel_values'][0], dtype=jnp.float32)
            rng, step_rng = jax.random.split(rng)
            state, loss = train_step(state, batch, step_rng)
            epoch_loss += loss
            num_batches += 1
            
            if num_batches % 10 == 0:
                jax.clear_caches()
                print(f"Processed {num_batches} batches. Current loss: {loss}")
        except Exception as e:
            num_errors += 1
            print(f"Error processing batch: {e}")
            continue
    
    if num_batches > 0:
        avg_loss = epoch_loss / num_batches
        print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss}, Errors: {num_errors}")
    else:
        print(f"Epoch {epoch+1}/{num_epochs}, No valid batches processed, Errors: {num_errors}")
    
    jax.clear_caches()

# Save the fine-tuned model
output_dir = "/tmp/montevideo_fine_tuned_model"
os.makedirs(output_dir, exist_ok=True)
adjusted_unet.save_pretrained(output_dir, params=state.params["params"])

print(f"Model saved to {output_dir}")