Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import os | |
# Check if the token is being accessed | |
hf_token = os.getenv("HF_HOME") | |
if hf_token: | |
print("Successfully retrieved Hugging Face token.") | |
else: | |
print("Failed to retrieve Hugging Face token.") | |
# # Load the model and tokenizer | |
# model_name = "meta-llama/CodeLlama-7b-hf" | |
# model = AutoModelForCausalLM.from_pretrained(model_name) | |
# tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# def generate_code(prompt): | |
# inputs = tokenizer(prompt, return_tensors="pt") | |
# outputs = model.generate(inputs["input_ids"], max_length=200) | |
# code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# return code | |
# # Set up the Gradio interface | |
# demo = gr.Interface(fn=generate_code, | |
# inputs="text", | |
# outputs="text", | |
# title="CodeLlama 7B Model", | |
# description="Generate code with CodeLlama-7b-hf.").launch() | |