advisor / app.py
veerukhannan's picture
Update app.py
cb15139 verified
raw
history blame
11.6 kB
import gradio as gr
from typing import List, Dict, Tuple
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel
import torch
import os
from astrapy.db import AstraDB
from dotenv import load_dotenv
from huggingface_hub import login
import time
import logging
from functools import lru_cache
import numpy as np
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
class LegalTextSearchBot:
def __init__(self):
try:
# Initialize AstraDB connection
self.astra_db = AstraDB(
token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
)
self.collection = self.astra_db.collection(os.getenv("ASTRA_DB_COLLECTION"))
# Initialize language model for text generation
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.float32,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize text generation pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15,
device_map="auto"
)
self.llm = HuggingFacePipeline(pipeline=pipe)
# Initialize embedding model
self.embedding_model_name = "sentence-transformers/all-MiniLM-L6-v2"
self.embedding_pipeline = pipeline(
"feature-extraction",
model=self.embedding_model_name,
device_map="auto"
)
self.template = """
IMPORTANT: You are a legal assistant that provides accurate information based on the Indian legal sections provided in the context.
STRICT RULES:
1. Base your response ONLY on the provided legal sections
2. If you cannot find relevant information, respond with: "I apologize, but I cannot find information about that in the legal database."
3. Do not make assumptions or use external knowledge
4. Always cite the specific section numbers you're referring to
5. Be precise and accurate in your legal interpretations
6. If quoting from the sections, use quotes and cite the section number
Context (Legal Sections): {context}
Chat History: {chat_history}
Question: {question}
Answer:"""
self.prompt = ChatPromptTemplate.from_template(self.template)
self.chat_history = ""
self.is_searching = False
except Exception as e:
logger.error(f"Error initializing LegalTextSearchBot: {str(e)}")
raise
def get_embedding(self, text: str) -> List[float]:
"""Generate embedding vector for text"""
try:
# Clean and prepare text
text = text.replace('\n', ' ').strip()
# Generate embedding
outputs = self.embedding_pipeline(text)
embeddings = torch.mean(torch.tensor(outputs[0]), dim=0)
# Convert to list and ensure correct dimension
embedding_list = embeddings.tolist()
# Pad or truncate to exactly 1024 dimensions
if len(embedding_list) < 1024:
embedding_list.extend([0.0] * (1024 - len(embedding_list)))
elif len(embedding_list) > 1024:
embedding_list = embedding_list[:1024]
return embedding_list
except Exception as e:
logger.error(f"Error generating embedding: {str(e)}")
raise
@lru_cache(maxsize=100)
def _cached_search(self, query: str) -> tuple:
"""Cached version of vector search"""
try:
# Generate embedding for query
query_embedding = self.get_embedding(query)
results = list(self.collection.vector_find(
query_embedding,
limit=5,
fields=["section_number", "title", "chapter_number", "chapter_title",
"content", "type", "metadata"]
))
return tuple(results)
except Exception as e:
logger.error(f"Error in vector search: {str(e)}")
return tuple()
def _search_astra(self, query: str) -> List[Dict]:
if not self.is_searching:
return []
try:
results = list(self._cached_search(query))
if not results and self.is_searching:
results = list(self.collection.find(
{},
limit=5
))
return results
except Exception as e:
logger.error(f"Error searching AstraDB: {str(e)}")
return []
def format_section(self, section: Dict) -> str:
try:
return f"""
{'='*80}
Chapter {section.get('chapter_number', 'N/A')}: {section.get('chapter_title', 'N/A')}
Section {section.get('section_number', 'N/A')}: {section.get('title', 'N/A')}
Type: {section.get('type', 'section')}
Content:
{section.get('content', 'N/A')}
References: {', '.join(section.get('metadata', {}).get('references', [])) or 'None'}
{'='*80}
"""
except Exception as e:
logger.error(f"Error formatting section: {str(e)}")
return str(section)
def search_sections(self, query: str, progress=gr.Progress()) -> Tuple[str, str]:
self.is_searching = True
start_time = time.time()
try:
progress(0, desc="Initializing search...")
if not query.strip():
return "Please enter a search query.", "Please provide a specific legal question or topic to search for."
progress(0.1, desc="Searching relevant sections...")
search_results = self._search_astra(query)
if not search_results:
return "No relevant sections found.", "I apologize, but I cannot find relevant sections in the database."
if not self.is_searching:
return "Search cancelled.", "Search was stopped by user."
progress(0.3, desc="Processing results...")
raw_results = []
context_parts = []
for idx, result in enumerate(search_results):
if not self.is_searching:
return "Search cancelled.", "Search was stopped by user."
raw_results.append(self.format_section(result))
context_parts.append(f"""
Section {result.get('section_number')}: {result.get('title')}
{result.get('content', '')}
""")
progress((0.3 + (idx * 0.1)), desc=f"Processing result {idx + 1} of {len(search_results)}...")
if not self.is_searching:
return "Search cancelled.", "Search was stopped by user."
progress(0.8, desc="Generating AI interpretation...")
context = "\n\n".join(context_parts)
chain = self.prompt | self.llm
ai_response = chain.invoke({
"context": context,
"chat_history": self.chat_history,
"question": query
})
self.chat_history += f"\nUser: {query}\nAI: {ai_response}\n"
elapsed_time = time.time() - start_time
logger.info(f"Search completed in {elapsed_time:.2f} seconds")
progress(1.0, desc="Search complete!")
return "\n".join(raw_results), ai_response
except Exception as e:
logger.error(f"Error processing query: {str(e)}")
return f"Error processing query: {str(e)}", "An error occurred while processing your query."
finally:
self.is_searching = False
def stop_search(self):
"""Stop the current search operation"""
self.is_searching = False
return "Search cancelled.", "Search was stopped by user."
def create_interface():
with gr.Blocks(title="Bharatiya Nyaya Sanhita Search", theme=gr.themes.Soft()) as iface:
search_bot = LegalTextSearchBot()
gr.Markdown("""
# πŸ“š Bharatiya Nyaya Sanhita Legal Search System
Search through the Bharatiya Nyaya Sanhita, 2023 and get:
1. πŸ“œ Relevant sections, explanations, and illustrations
2. πŸ€– AI-powered interpretation of the legal content
*Use the Stop button if you want to cancel a long-running search.*
""")
with gr.Row():
query_input = gr.Textbox(
label="Your Query",
placeholder="e.g., What are the penalties for public servants who conceal information?",
lines=2
)
with gr.Row():
search_button = gr.Button("πŸ” Search", variant="primary", scale=4)
stop_button = gr.Button("πŸ›‘ Stop", variant="stop", scale=1)
with gr.Row():
raw_output = gr.Markdown(label="πŸ“œ Relevant Legal Sections")
ai_output = gr.Markdown(label="πŸ€– AI Interpretation")
gr.Examples(
examples=[
"What are the penalties for public servants who conceal information?",
"What constitutes criminal conspiracy?",
"Explain the provisions related to culpable homicide",
"What are the penalties for causing death by negligence?",
"What are the punishments for corruption?"
],
inputs=query_input,
label="Example Queries"
)
# Handle search
search_event = search_button.click(
fn=search_bot.search_sections,
inputs=query_input,
outputs=[raw_output, ai_output],
)
# Handle stop
stop_button.click(
fn=search_bot.stop_search,
outputs=[raw_output, ai_output],
cancels=[search_event]
)
# Handle Enter key
query_input.submit(
fn=search_bot.search_sections,
inputs=query_input,
outputs=[raw_output, ai_output],
)
return iface
if __name__ == "__main__":
try:
demo = create_interface()
demo.launch()
except Exception as e:
logger.error(f"Error launching application: {str(e)}")
else:
try:
demo = create_interface()
app = demo.launch(share=False)
except Exception as e:
logger.error(f"Error launching application: {str(e)}")