File size: 11,588 Bytes
5f5f8de
38dd749
5f5f8de
 
cb15139
121ef90
5f5f8de
 
 
 
105179a
121ef90
 
cb15139
121ef90
 
 
 
 
 
 
5f5f8de
 
 
 
 
38dd749
5f5f8de
121ef90
cb15139
121ef90
 
 
 
cb15139
121ef90
cb15139
 
 
 
 
 
 
 
 
 
121ef90
 
 
 
 
 
 
 
 
 
 
 
cb15139
 
 
 
 
 
 
 
121ef90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dd749
121ef90
 
 
 
 
 
 
 
 
 
cb15139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121ef90
 
cb15139
105179a
cb15139
 
 
a53e1b6
cb15139
a53e1b6
105179a
 
a53e1b6
cb15139
121ef90
 
 
 
 
 
 
a53e1b6
121ef90
 
 
 
a53e1b6
 
 
 
 
 
 
5f5f8de
121ef90
 
5f5f8de
a53e1b6
105179a
a53e1b6
105179a
 
a53e1b6
105179a
a53e1b6
 
 
 
105179a
 
a53e1b6
 
121ef90
a53e1b6
 
105179a
121ef90
 
105179a
5f5f8de
121ef90
 
 
 
 
5f5f8de
 
 
a53e1b6
38dd749
121ef90
 
 
105179a
38dd749
a53e1b6
 
105179a
121ef90
 
105179a
a53e1b6
 
 
 
 
121ef90
 
 
 
5f5f8de
105179a
a53e1b6
5f5f8de
 
38dd749
5f5f8de
 
 
 
 
38dd749
 
121ef90
 
 
 
38dd749
5f5f8de
 
121ef90
 
 
 
5f5f8de
121ef90
 
 
 
105179a
38dd749
105179a
121ef90
 
38dd749
105179a
38dd749
105179a
 
 
38dd749
121ef90
38dd749
 
 
 
 
 
 
 
 
 
121ef90
 
38dd749
 
121ef90
 
38dd749
 
 
 
105179a
 
 
 
38dd749
 
 
 
 
121ef90
 
 
38dd749
105179a
 
 
121ef90
105179a
121ef90
105179a
121ef90
38dd749
 
121ef90
38dd749
121ef90
38dd749
105179a
38dd749
 
 
5f5f8de
38dd749
121ef90
 
 
 
 
105179a
121ef90
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import gradio as gr
from typing import List, Dict, Tuple
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel
import torch
import os
from astrapy.db import AstraDB
from dotenv import load_dotenv
from huggingface_hub import login
import time
import logging
from functools import lru_cache
import numpy as np

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()
login(token=os.getenv("HUGGINGFACE_API_TOKEN"))

class LegalTextSearchBot:
    def __init__(self):
        try:
            # Initialize AstraDB connection
            self.astra_db = AstraDB(
                token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
                api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
            )
            self.collection = self.astra_db.collection(os.getenv("ASTRA_DB_COLLECTION"))
            
            # Initialize language model for text generation
            model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
            model = AutoModelForCausalLM.from_pretrained(
                model_name,
                device_map="auto",
                torch_dtype=torch.float32,
            )
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            
            # Initialize text generation pipeline
            pipe = pipeline(
                "text-generation",
                model=model,
                tokenizer=tokenizer,
                max_new_tokens=512,
                temperature=0.7,
                top_p=0.95,
                repetition_penalty=1.15,
                device_map="auto"
            )
            self.llm = HuggingFacePipeline(pipeline=pipe)
            
            # Initialize embedding model
            self.embedding_model_name = "sentence-transformers/all-MiniLM-L6-v2"
            self.embedding_pipeline = pipeline(
                "feature-extraction",
                model=self.embedding_model_name,
                device_map="auto"
            )
            
            self.template = """
            IMPORTANT: You are a legal assistant that provides accurate information based on the Indian legal sections provided in the context.
            
            STRICT RULES:
            1. Base your response ONLY on the provided legal sections
            2. If you cannot find relevant information, respond with: "I apologize, but I cannot find information about that in the legal database."
            3. Do not make assumptions or use external knowledge
            4. Always cite the specific section numbers you're referring to
            5. Be precise and accurate in your legal interpretations
            6. If quoting from the sections, use quotes and cite the section number
            
            Context (Legal Sections): {context}
            
            Chat History: {chat_history}
            
            Question: {question}
            
            Answer:"""
            
            self.prompt = ChatPromptTemplate.from_template(self.template)
            self.chat_history = ""
            self.is_searching = False
            
        except Exception as e:
            logger.error(f"Error initializing LegalTextSearchBot: {str(e)}")
            raise

    def get_embedding(self, text: str) -> List[float]:
        """Generate embedding vector for text"""
        try:
            # Clean and prepare text
            text = text.replace('\n', ' ').strip()
            
            # Generate embedding
            outputs = self.embedding_pipeline(text)
            embeddings = torch.mean(torch.tensor(outputs[0]), dim=0)
            
            # Convert to list and ensure correct dimension
            embedding_list = embeddings.tolist()
            
            # Pad or truncate to exactly 1024 dimensions
            if len(embedding_list) < 1024:
                embedding_list.extend([0.0] * (1024 - len(embedding_list)))
            elif len(embedding_list) > 1024:
                embedding_list = embedding_list[:1024]
            
            return embedding_list
            
        except Exception as e:
            logger.error(f"Error generating embedding: {str(e)}")
            raise

    @lru_cache(maxsize=100)
    def _cached_search(self, query: str) -> tuple:
        """Cached version of vector search"""
        try:
            # Generate embedding for query
            query_embedding = self.get_embedding(query)
            
            results = list(self.collection.vector_find(
                query_embedding,
                limit=5,
                fields=["section_number", "title", "chapter_number", "chapter_title", 
                       "content", "type", "metadata"]
            ))
            return tuple(results)
        except Exception as e:
            logger.error(f"Error in vector search: {str(e)}")
            return tuple()

    def _search_astra(self, query: str) -> List[Dict]:
        if not self.is_searching:
            return []
            
        try:
            results = list(self._cached_search(query))
            
            if not results and self.is_searching:
                results = list(self.collection.find(
                    {},
                    limit=5
                ))
            
            return results
            
        except Exception as e:
            logger.error(f"Error searching AstraDB: {str(e)}")
            return []

    def format_section(self, section: Dict) -> str:
        try:
            return f"""
{'='*80}
Chapter {section.get('chapter_number', 'N/A')}: {section.get('chapter_title', 'N/A')}
Section {section.get('section_number', 'N/A')}: {section.get('title', 'N/A')}
Type: {section.get('type', 'section')}

Content:
{section.get('content', 'N/A')}

References: {', '.join(section.get('metadata', {}).get('references', [])) or 'None'}
{'='*80}
"""
        except Exception as e:
            logger.error(f"Error formatting section: {str(e)}")
            return str(section)

    def search_sections(self, query: str, progress=gr.Progress()) -> Tuple[str, str]:
        self.is_searching = True
        start_time = time.time()
        
        try:
            progress(0, desc="Initializing search...")
            if not query.strip():
                return "Please enter a search query.", "Please provide a specific legal question or topic to search for."
            
            progress(0.1, desc="Searching relevant sections...")
            search_results = self._search_astra(query)
            
            if not search_results:
                return "No relevant sections found.", "I apologize, but I cannot find relevant sections in the database."
            
            if not self.is_searching:
                return "Search cancelled.", "Search was stopped by user."
            
            progress(0.3, desc="Processing results...")
            raw_results = []
            context_parts = []
            
            for idx, result in enumerate(search_results):
                if not self.is_searching:
                    return "Search cancelled.", "Search was stopped by user."
                    
                raw_results.append(self.format_section(result))
                context_parts.append(f"""
Section {result.get('section_number')}: {result.get('title')}
{result.get('content', '')}
""")
                progress((0.3 + (idx * 0.1)), desc=f"Processing result {idx + 1} of {len(search_results)}...")
            
            if not self.is_searching:
                return "Search cancelled.", "Search was stopped by user."
            
            progress(0.8, desc="Generating AI interpretation...")
            context = "\n\n".join(context_parts)
            
            chain = self.prompt | self.llm
            ai_response = chain.invoke({
                "context": context,
                "chat_history": self.chat_history,
                "question": query
            })
            
            self.chat_history += f"\nUser: {query}\nAI: {ai_response}\n"
            
            elapsed_time = time.time() - start_time
            logger.info(f"Search completed in {elapsed_time:.2f} seconds")
            
            progress(1.0, desc="Search complete!")
            return "\n".join(raw_results), ai_response
            
        except Exception as e:
            logger.error(f"Error processing query: {str(e)}")
            return f"Error processing query: {str(e)}", "An error occurred while processing your query."
        finally:
            self.is_searching = False

    def stop_search(self):
        """Stop the current search operation"""
        self.is_searching = False
        return "Search cancelled.", "Search was stopped by user."

def create_interface():
    with gr.Blocks(title="Bharatiya Nyaya Sanhita Search", theme=gr.themes.Soft()) as iface:
        search_bot = LegalTextSearchBot()
        
        gr.Markdown("""
        # πŸ“š Bharatiya Nyaya Sanhita Legal Search System
        
        Search through the Bharatiya Nyaya Sanhita, 2023 and get:
        1. πŸ“œ Relevant sections, explanations, and illustrations
        2. πŸ€– AI-powered interpretation of the legal content
        
        *Use the Stop button if you want to cancel a long-running search.*
        """)
        
        with gr.Row():
            query_input = gr.Textbox(
                label="Your Query",
                placeholder="e.g., What are the penalties for public servants who conceal information?",
                lines=2
            )
        
        with gr.Row():
            search_button = gr.Button("πŸ” Search", variant="primary", scale=4)
            stop_button = gr.Button("πŸ›‘ Stop", variant="stop", scale=1)
        
        with gr.Row():
            raw_output = gr.Markdown(label="πŸ“œ Relevant Legal Sections")
            ai_output = gr.Markdown(label="πŸ€– AI Interpretation")
        
        gr.Examples(
            examples=[
                "What are the penalties for public servants who conceal information?",
                "What constitutes criminal conspiracy?",
                "Explain the provisions related to culpable homicide",
                "What are the penalties for causing death by negligence?",
                "What are the punishments for corruption?"
            ],
            inputs=query_input,
            label="Example Queries"
        )
        
        # Handle search
        search_event = search_button.click(
            fn=search_bot.search_sections,
            inputs=query_input,
            outputs=[raw_output, ai_output],
        )
        
        # Handle stop
        stop_button.click(
            fn=search_bot.stop_search,
            outputs=[raw_output, ai_output],
            cancels=[search_event]
        )
        
        # Handle Enter key
        query_input.submit(
            fn=search_bot.search_sections,
            inputs=query_input,
            outputs=[raw_output, ai_output],
        )
    
    return iface

if __name__ == "__main__":
    try:
        demo = create_interface()
        demo.launch()
    except Exception as e:
        logger.error(f"Error launching application: {str(e)}")
else:
    try:
        demo = create_interface()
        app = demo.launch(share=False)
    except Exception as e:
        logger.error(f"Error launching application: {str(e)}")