|
import gradio as gr |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
|
|
model_name = "t5-base" |
|
tokenizer = T5Tokenizer.from_pretrained(model_name) |
|
model = T5ForConditionalGeneration.from_pretrained(model_name) |
|
|
|
def generate_text(input_text): |
|
|
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
output_ids = model.generate(input_ids) |
|
|
|
|
|
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
return output_text |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_text, |
|
inputs=gr.inputs.Textbox(placeholder="Enter your prompt here (e.g. 'translate English to French: The weather is nice today.')"), |
|
outputs=gr.outputs.Textbox(label="Generated Text"), |
|
title="Text-to-Text Generation with T5", |
|
description="A demo for text-to-text generation using the T5 model.", |
|
) |
|
|
|
iface.launch() |
|
|