File size: 8,083 Bytes
b9bb7e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64d65e
b9bb7e7
 
c64d65e
b9bb7e7
 
bdc42f3
2ed5c8a
bdc42f3
2ed5c8a
c658d15
2ed5c8a
 
 
 
 
bdc42f3
b7e0851
 
c64d65e
bdc42f3
c64d65e
c658d15
c64d65e
 
 
 
 
 
 
 
 
 
b7e0851
 
c64d65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e0851
2ed5c8a
 
c64d65e
e5b87ce
c658d15
c64d65e
 
 
 
 
 
 
5588b0d
c64d65e
1317ce0
 
 
 
c64d65e
 
 
b7e0851
c64d65e
2ed5c8a
c64d65e
2ed5c8a
 
 
9ba056f
 
 
 
 
 
 
 
 
 
 
 
 
d1c0b09
2ed5c8a
 
abe2268
2ed5c8a
 
bdc42f3
2ed5c8a
036be0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc42f3
036be0e
 
2ed5c8a
ab53318
66bbfcf
036be0e
09f0945
e3d8df5
0da6aa3
b7e0851
 
036be0e
75ca28f
 
 
 
 
 
 
 
 
 
 
 
 
aab0a5e
75ca28f
 
 
b7e0851
aab0a5e
 
 
 
 
 
 
b7e0851
 
9ba056f
b7e0851
9ba056f
 
b7e0851
 
 
2ed5c8a
 
 
 
036be0e
 
 
 
b7e0851
036be0e
 
 
 
bf9168a
75ca28f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import gradio as gr
import os

from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings 
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub

from pathlib import Path
import chromadb

from transformers import AutoTokenizer
import transformers
import torch
import tqdm 
import accelerate


#Set parameters

llm_model = 'mistralai/Mixtral-8x7B-Instruct-v0.1'
list_file_obj = '/home/user/app/pdfs/'
chunk_size = 1024
chunk_overlap = 128
temperature = 0.1
max_tokens = 6000
top_k = 3


def load_doc(list_file_path):
    # Processing for one document only
    # loader = PyPDFLoader(file_path)
    # pages = loader.load()
    loaders = [PyPDFLoader(list_file_obj+x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = chunk_size, 
        chunk_overlap = chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits



# Create vector database
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name,
        # persist_directory=default_persist_directory
    )
    return vectordb

# Load vector database
def load_db():
    embedding = HuggingFaceEmbeddings()
    vectordb = Chroma(
        # persist_directory=default_persist_directory, 
        embedding_function=embedding)
    return vectordb

    
# Initialize database
def initialize_database(list_file_obj):
    # Create list of documents (when valid)
    #list_file_path = [x.name for x in list_file_obj if x is not None]
    list_file_path = os.listdir(list_file_obj)
    # Create collection_name for vector database
    collection_name = Path(list_file_path[0]).stem
    # Fix potential issues from naming convention
    ## Remove space
    collection_name = collection_name.replace(" ","-") 
    ## Limit lenght to 50 characters
    collection_name = collection_name[:50]
    print(collection_name)
    ## Enforce start and end as alphanumeric character
    if not collection_name[0].isalnum():
        collection_name[0] = 'A'
    if not collection_name[-1].isalnum():
        collection_name[-1] = 'Z'
    # print('list_file_path: ', list_file_path)
    print('Collection name: ', collection_name)
    # Load document and create splits
    doc_splits = load_doc(list_file_path)
    # Create or load vector database
    # global vector_db
    vector_db = create_db(doc_splits, collection_name)
    return vector_db, collection_name


def initialize_llmchain(vector_db):
    # Initialize langchain LLM chain
    llm = HuggingFaceHub(repo_id = llm_model,model_kwargs={"temperature": temperature, 
                                                           "max_new_tokens": max_tokens, 
                                                           "top_k": top_k, 
                                                           "load_in_8bit": True})
    retriever=vector_db.as_retriever()
    memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
    qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff", 
                                                         memory=memory,return_source_documents=True,verbose=False,)
        
    return qa_chain

def initialize_LLM(vector_db):
    # print("llm_option",llm_option)
    llm_name = llm_model
    qa_chain = initialize_llmchain(vector_db)
    return qa_chain


def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    #print("formatted_chat_history",formatted_chat_history)
   
    # Generate response using QA chain
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    # Langchain sources are zero-based
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    # print ('chat response: ', response_answer)
    # print('DB source', response_sources)
    
    # Append user message and response to chat history
    new_history = history + [(message, response_answer)]
    # return gr.update(value=""), new_history, response_sources[0], response_sources[1] 
    return qa_chain, new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def demo():
    with gr.Blocks() as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()

        chatbot = gr.Chatbot(height=300)
        with gr.Accordion("References", open=True):
            with gr.Row():
                doc_source1 = gr.Textbox(label="Reference 1", lines=5, container=True, scale=20)
                source1_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                doc_source2 = gr.Textbox(label="Reference 2", lines=5, container=True, scale=20)
                source2_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                doc_source3 = gr.Textbox(label="Reference 3", lines=5, container=True, scale=20)
                source3_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type message", container=True)
            with gr.Row():
                #db_btn = gr.Button('Initialize database')
                qachain_btn = gr.Button('Start chatbot')
                submit_btn = gr.Button("Submit")
                clear_btn = gr.ClearButton([msg, chatbot])

        # document = list_file_obj
        vector_db, collection_name = initialize_database(list_file_obj)

        # #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
        # db_btn.click(initialize_database, \
        #     inputs=[document], \
        #     outputs=[vector_db, collection_name])
        
        qachain_btn.click(initialize_LLM, \
            inputs=[vector_db], \
            outputs=[qa_chain]).then(lambda:[0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)    
    
        # Chatbot events
        msg.submit(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
        submit_btn.click(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
        clear_btn.click(lambda:[None,"",0,"",0,"",0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()