Spaces:
Sleeping
Sleeping
File size: 2,795 Bytes
b899370 10e90f5 979996d 10e90f5 c758ec0 10e90f5 b95201b 10e90f5 b899370 10e90f5 b899370 10e90f5 a7682fa 10e90f5 a7682fa 979996d a7682fa 10e90f5 a7682fa 10e90f5 a7682fa b899370 10e90f5 b899370 c758ec0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
from huggingface_hub import InferenceClient
# Step 1: Read your background info
with open("BACKGROUND.md", "r", encoding="utf-8") as f:
background_text = f.read()
# Step 2: Set up your InferenceClient (same as before)
client = InferenceClient("meta-llama/Llama-3.2-1B")
# HuggingFaceH4/zephyr-7b-beta
def respond(
message,
history: list[dict],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
if history is None:
history = []
# Include background text as part of the system message for context
combined_system_message = f"{system_message}\n\n### Background Information ###\n{background_text}"
# Start building the conversation history
messages = [{"role": "system", "content": combined_system_message}]
# Add conversation history
for interaction in history:
if "user" in interaction:
messages.append({"role": "user", "content": interaction["user"]})
if "assistant" in interaction:
messages.append({"role": "assistant", "content": interaction["assistant"]})
# Add the latest user message
messages.append({"role": "user", "content": message})
# Generate response
response = ""
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.content
response += token
yield response
print("----- SYSTEM MESSAGE -----")
print(messages[0]["content"])
print("----- FULL MESSAGES LIST -----")
for m in messages:
print(m)
print("-------------------------")
# Step 3: Build a Gradio Blocks interface with two Tabs
with gr.Blocks() as demo:
# Tab 1: GPT Chat Agent
with gr.Tab("GPT Chat Agent"):
gr.Markdown("## Welcome to Varun's GPT Agent")
gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!")
chat = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
type="messages", # Specify message type
)
# # Tab 2: Background Document
# with gr.Tab("Varun's Background"):
# gr.Markdown("# About Varun")
# gr.Markdown(background_text)
# Step 4: Launch
if __name__ == "__main__":
demo.launch()
|