File size: 5,129 Bytes
0325cdc 0ac8362 0325cdc 0ac8362 0325cdc 0ac8362 0325cdc 0ac8362 0325cdc 0ac8362 0325cdc ad3d616 0325cdc 7d45ce2 0ac8362 0325cdc 0ac8362 0325cdc ae6b0ae 0325cdc ae6b0ae 0325cdc ae6b0ae 0325cdc 0ac8362 0325cdc 0ac8362 0325cdc ae6b0ae 0325cdc 7d45ce2 0325cdc 7d45ce2 0325cdc 7d45ce2 0325cdc 7d45ce2 0325cdc 7d45ce2 0325cdc 7d45ce2 0325cdc b808e34 0ac8362 0325cdc 0ac8362 0325cdc ae6b0ae f836f83 7d45ce2 0ac8362 0325cdc 7d45ce2 0325cdc 7d45ce2 0325cdc b744975 0325cdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
"""Object detection demo with MobileNet SSD.
This model and code are based on
https://github.com/robmarkcole/object-detection-app
"""
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.download import download_file
HERE = Path(__file__).parent
ROOT = HERE.parent
logger = logging.getLogger(__name__)
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501
MODEL_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.caffemodel"
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501
PROTOTXT_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.prototxt.txt"
CLASSES = [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor",
]
@st.experimental_singleton # type: ignore # See https://github.com/python/mypy/issues/7781, https://github.com/python/mypy/issues/12566 # noqa: E501
def generate_label_colors():
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
COLORS = generate_label_colors()
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
DEFAULT_CONFIDENCE_THRESHOLD = 0.5
class Detection(NamedTuple):
name: str
prob: float
# Session-specific caching
cache_key = "object_detection_dnn"
if cache_key in st.session_state:
net = st.session_state[cache_key]
else:
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
st.session_state[cache_key] = net
streaming_placeholder = st.empty()
confidence_threshold = st.slider(
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05
)
def _annotate_image(image, detections):
# loop over the detections
(h, w) = image.shape[:2]
result: List[Detection] = []
for i in np.arange(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > confidence_threshold:
# extract the index of the class label from the `detections`,
# then compute the (x, y)-coordinates of the bounding box for
# the object
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
name = CLASSES[idx]
result.append(Detection(name=name, prob=float(confidence)))
# display the prediction
label = f"{name}: {round(confidence * 100, 2)}%"
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(
image,
label,
(startX, y),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
COLORS[idx],
2,
)
return image, result
result_queue: queue.Queue = (
queue.Queue()
) # TODO: A general-purpose shared state object may be more useful.
def callback(frame: av.VideoFrame) -> av.VideoFrame:
image = frame.to_ndarray(format="bgr24")
blob = cv2.dnn.blobFromImage(
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
)
net.setInput(blob)
detections = net.forward()
annotated_image, result = _annotate_image(image, detections)
# NOTE: This `recv` method is called in another thread,
# so it must be thread-safe.
result_queue.put(result) # TODO:
return av.VideoFrame.from_ndarray(annotated_image, format="bgr24")
with streaming_placeholder.container():
webrtc_ctx = webrtc_streamer(
key="object-detection",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]},
video_frame_callback=callback,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
)
if st.checkbox("Show the detected labels", value=True):
if webrtc_ctx.state.playing:
labels_placeholder = st.empty()
# NOTE: The video transformation with object detection and
# this loop displaying the result labels are running
# in different threads asynchronously.
# Then the rendered video frames and the labels displayed here
# are not strictly synchronized.
while True:
try:
result = result_queue.get(timeout=1.0)
except queue.Empty:
result = None
labels_placeholder.table(result)
st.markdown(
"This demo uses a model and code from "
"https://github.com/robmarkcole/object-detection-app. "
"Many thanks to the project."
)
|