File size: 3,267 Bytes
b6d7881 2f0e211 3e93b01 39fc553 a41389e 2f0e211 26a8953 7c40be6 e455307 26a8953 2f0e211 26a8953 d8804c0 26a8953 cfc65ef a41389e 26a8953 a41389e d8804c0 26a8953 a08bac4 4dcf9b3 26a8953 2f0e211 26a8953 39fc553 8d1c8be 39fc553 8d1c8be cfc65ef 26a8953 8d1c8be 26a8953 8d1c8be 26a8953 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import os
import gradio as gr
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import ChatAnthropic
from langchain.prompts import ChatPromptTemplate
from langchain.document_loaders import TextLoader
# Set API keys from environment variables
os.environ['ANTHROPIC_API_KEY'] = os.getenv("ANTHROPIC_API_KEY")
pdf_content = ""
def load_pdf(pdf_doc):
global pdf_content
try:
if pdf_doc is None:
return "No PDF uploaded."
# Load PDF content
loader = OnlinePDFLoader(pdf_doc.name)
documents = loader.load()
# Assuming the `documents` is a list of strings representing each page
pdf_content = ' '.join(documents)
return "PDF Loaded Successfully."
except Exception as e:
return f"Error processing PDF: {e}"
def chat_with_pdf(question):
# Create an instance of the ChatAnthropic model
model = ChatAnthropic()
# Define the chat prompt template
prompt = ChatPromptTemplate.from_messages([
("human", pdf_content),
("human", question),
("human", "Give a clear summary of this pdf information at a 8th grade reading level.")
])
# Invoke the model using the chain
chain = prompt | model
response = chain.invoke({})
# Get the summary of the PDF content
summarizer = pipeline("summarization")
summary = summarizer(pdf_content, max_length=1000, min_length=30, do_sample=False)[0]['summary_text']
# Combine the chat response and the summary
combined_response = f"Summary: {summary}\n\nChat Response: {response.content}"
return combined_response
# Define Gradio UI
def gradio_interface(pdf_doc, question):
# ...
return gr.Interface(
fn=chat_with_pdf,
inputs=[pdf_doc, question],
outputs=gr.outputs.Textbox(),
api_name='chat_with_pdf_2'
)
def gradio_interface(pdf_doc, question):
if not pdf_content:
return load_pdf(pdf_doc)
else:
# Get the summary of the PDF content
summarizer = pipeline("summarization")
summary = summarizer(pdf_content, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
# Get the chat response
response = chat_with_pdf(question)
# Define the outputs
summary_output = gr.outputs.Textbox(label="Summary")
chat_output = gr.outputs.Textbox(label="Chat Response")
# Return the Gradio interface with the Multi output
return gr.Interface(
fn=chat_with_pdf,
inputs=[pdf_doc, question],
outputs=gradio.outputs.Multi(summary_output, chat_output),
examples=[["sample.pdf", "What is this document about?"]],
api_name='chat_with_pdf_2'
)
gradio_interface(None, None)
gr.Interface(fn=gradio_interface,
inputs=[gr.File(label="Load a pdf", file_types=['.pdf'], type="file"),
gr.Textbox(label="Ask a question about the PDF")],
outputs="text",
live=True,
title="Chat with PDF content using Anthropic",
description="Upload a .PDF and interactively chat about its content."
).launch()
|