Spaces:
Sleeping
Sleeping
File size: 21,120 Bytes
f5b2435 68219a2 b3c44d6 d065f32 f5b2435 68219a2 94516b8 68219a2 d065f32 68219a2 b3c44d6 68219a2 1d4e1d7 68219a2 1d4e1d7 68219a2 1d4e1d7 d4e85ea 1d4e1d7 d4e85ea 1d4e1d7 68219a2 1d4e1d7 68219a2 1d4e1d7 68219a2 1d4e1d7 68219a2 1d4e1d7 68219a2 1d4e1d7 68219a2 d065f32 6f9f208 d065f32 12088f9 d065f32 513dde8 6f9f208 d065f32 12088f9 68219a2 b3c44d6 dfd3685 d065f32 dfd3685 d065f32 68219a2 b3c44d6 dfd3685 68219a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
import streamlit as st
import pandas as pd
import pandas_datareader as pdr
import numpy as np
import yfinance as yf
import json
import requests
from bs4 import BeautifulSoup
from typing import List
import xgboost as xgb
from tqdm import tqdm
from sklearn import linear_model
import joblib
import os
from sklearn.metrics import roc_auc_score, precision_score, recall_score
import datetime
from pandas.tseries.offsets import BDay
from datasets import load_dataset
dataset = load_dataset("boomsss/SPX_full_30min")
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
# Create an XGBRegressor model
# model = xgb.XGBRegressor(n_estimators=100, objective='reg:squarederror', random_state = 42)
model = linear_model.LinearRegression()
overall_results = []
# Iterate over the rows in the DataFrame, one step at a time
for i in tqdm(range(num_training_rows, df.shape[0] - num_periods + 1),desc='LR Model'):
# Split the data into training and test sets
X_train = df.drop(target_column, axis=1).iloc[:i]
y_train = df[target_column].iloc[:i]
X_test = df.drop(target_column, axis=1).iloc[i:i+num_periods]
y_test = df[target_column].iloc[i:i+num_periods]
# Fit the model to the training data
model.fit(X_train, y_train)
# Make a prediction on the test data
predictions = model.predict(X_test)
# Create a DataFrame to store the true and predicted values
result_df = pd.DataFrame({'True': y_test, 'Predicted': predictions}, index=y_test.index)
overall_results.append(result_df)
df_results = pd.concat(overall_results)
# model.save_model('model_lr.bin')
# Return the true and predicted values, and fitted model
return df_results, model
def walk_forward_validation_seq(df, target_column_clf, target_column_regr, num_training_rows, num_periods):
# Create run the regression model to get its target
res, model1 = walk_forward_validation(df.drop(columns=[target_column_clf]).dropna(), target_column_regr, num_training_rows, num_periods)
# joblib.dump(model1, 'model1.bin')
# Merge the result df back on the df for feeding into the classifier
for_merge = res[['Predicted']]
for_merge.columns = ['RegrModelOut']
for_merge['RegrModelOut'] = for_merge['RegrModelOut'] > 0
df = df.merge(for_merge, left_index=True, right_index=True)
df = df.drop(columns=[target_column_regr])
df = df[[
'CurrentGap','RegrModelOut',target_column_clf
]]
df[target_column_clf] = df[target_column_clf].astype(bool)
df['RegrModelOut'] = df['RegrModelOut'].astype(bool)
# Create an XGBRegressor model
model2 = xgb.XGBClassifier(n_estimators=10, random_state = 42)
# model = linear_model.LogisticRegression(max_iter=1500)
overall_results = []
# Iterate over the rows in the DataFrame, one step at a time
for i in tqdm(range(num_training_rows, df.shape[0] - num_periods + 1),'CLF Model'):
# Split the data into training and test sets
X_train = df.drop(target_column_clf, axis=1).iloc[:i]
y_train = df[target_column_clf].iloc[:i]
X_test = df.drop(target_column_clf, axis=1).iloc[i:i+num_periods]
y_test = df[target_column_clf].iloc[i:i+num_periods]
# Fit the model to the training data
model2.fit(X_train, y_train)
# Make a prediction on the test data
predictions = model2.predict_proba(X_test)[:,-1]
# Create a DataFrame to store the true and predicted values
result_df = pd.DataFrame({'True': y_test, 'Predicted': predictions}, index=y_test.index)
overall_results.append(result_df)
df_results = pd.concat(overall_results)
# model1.save_model('model_ensemble.bin')
# joblib.dump(model2, 'model2.bin')
# Return the true and predicted values, and fitted model
return df_results, model1, model2
def seq_predict_proba(df, trained_reg_model, trained_clf_model):
regr_pred = trained_reg_model.predict(df)
regr_pred = regr_pred > 0
new_df = df.copy()
new_df['RegrModelOut'] = regr_pred
clf_pred_proba = trained_clf_model.predict_proba(new_df[['CurrentGap','RegrModelOut']])[:,-1]
return clf_pred_proba
def get_data():
# f = open('settings.json')
# j = json.load(f)
# API_KEY_FRED = j["API_KEY_FRED"]
API_KEY_FRED = os.getenv('API_KEY_FRED')
def parse_release_dates(release_id: str) -> List[str]:
release_dates_url = f'https://api.stlouisfed.org/fred/release/dates?release_id={release_id}&realtime_start=2015-01-01&include_release_dates_with_no_data=true&api_key={API_KEY_FRED}'
r = requests.get(release_dates_url)
text = r.text
soup = BeautifulSoup(text, 'xml')
dates = []
for release_date_tag in soup.find_all('release_date', {'release_id': release_id}):
dates.append(release_date_tag.text)
return dates
def parse_release_dates_obs(series_id: str) -> List[str]:
obs_url = f'https://api.stlouisfed.org/fred/series/observations?series_id={series_id}&realtime_start=2015-01-01&include_release_dates_with_no_data=true&api_key={API_KEY_FRED}'
r = requests.get(obs_url)
text = r.text
soup = BeautifulSoup(text, 'xml')
observations = []
for observation_tag in soup.find_all('observation'):
date = observation_tag.get('date')
value = observation_tag.get('value')
observations.append((date, value))
return observations
econ_dfs = {}
econ_tickers = [
'WALCL',
'NFCI',
'WRESBAL'
]
for et in tqdm(econ_tickers, desc='getting econ tickers'):
# p = parse_release_dates_obs(et)
# df = pd.DataFrame(columns = ['ds',et], data = p)
df = pdr.get_data_fred(et)
df.index = df.index.rename('ds')
# df.index = pd.to_datetime(df.index.rename('ds')).dt.tz_localize(None)
# df['ds'] = pd.to_datetime(df['ds']).dt.tz_localize(None)
econ_dfs[et] = df
# walcl = pd.DataFrame(columns = ['ds','WALCL'], data = p)
# walcl['ds'] = pd.to_datetime(walcl['ds']).dt.tz_localize(None)
# nfci = pd.DataFrame(columns = ['ds','NFCI'], data = p2)
# nfci['ds'] = pd.to_datetime(nfci['ds']).dt.tz_localize(None)
release_ids = [
"10", # "Consumer Price Index"
"46", # "Producer Price Index"
"50", # "Employment Situation"
"53", # "Gross Domestic Product"
"103", # "Discount Rate Meeting Minutes"
"180", # "Unemployment Insurance Weekly Claims Report"
"194", # "ADP National Employment Report"
"323" # "Trimmed Mean PCE Inflation Rate"
]
release_names = [
"CPI",
"PPI",
"NFP",
"GDP",
"FOMC",
"UNEMP",
"ADP",
"PCE"
]
releases = {}
for rid, n in tqdm(zip(release_ids, release_names), total = len(release_ids), desc='Getting release dates'):
releases[rid] = {}
releases[rid]['dates'] = parse_release_dates(rid)
releases[rid]['name'] = n
# Create a DF that has all dates with the name of the col as 1
# Once merged on the main dataframe, days with econ events will be 1 or None. Fill NA with 0
# This column serves as the true/false indicator of whether there was economic data released that day.
for rid in tqdm(release_ids, desc='Making indicators'):
releases[rid]['df'] = pd.DataFrame(
index=releases[rid]['dates'],
data={
releases[rid]['name']: 1
})
releases[rid]['df'].index = pd.DatetimeIndex(releases[rid]['df'].index)
# releases[rid]['df']['ds'] = pd.to_datetime(releases[rid]['df']['ds']).dt.tz_localize(None)
# releases[rid]['df'] = releases[rid]['df'].set_index('ds')
vix = yf.Ticker('^VIX')
spx = yf.Ticker('^GSPC')
prices_vix = vix.history(start='2018-07-01', interval='1d')
prices_spx = spx.history(start='2018-07-01', interval='1d')
prices_spx['index'] = [str(x).split()[0] for x in prices_spx.index]
prices_spx['index'] = pd.to_datetime(prices_spx['index']).dt.date
prices_spx.index = prices_spx['index']
prices_spx = prices_spx.drop(columns='index')
prices_vix['index'] = [str(x).split()[0] for x in prices_vix.index]
prices_vix['index'] = pd.to_datetime(prices_vix['index']).dt.date
prices_vix.index = prices_vix['index']
prices_vix = prices_vix.drop(columns='index')
data = prices_spx.merge(prices_vix[['Open','High','Low','Close']], left_index=True, right_index=True, suffixes=['','_VIX'])
data.index = pd.DatetimeIndex(data.index)
# Features
data['PrevClose'] = data['Close'].shift(1)
data['Perf5Day'] = data['Close'] > data['Close'].shift(5)
data['Perf5Day_n1'] = data['Perf5Day'].shift(1)
data['Perf5Day_n1'] = data['Perf5Day_n1'].astype(bool)
data['GreenDay'] = (data['Close'] > data['PrevClose']) * 1
data['RedDay'] = (data['Close'] <= data['PrevClose']) * 1
data['VIX5Day'] = data['Close_VIX'] > data['Close_VIX'].shift(5)
data['VIX5Day_n1'] = data['VIX5Day'].astype(bool)
data['Range'] = data[['Open','High']].max(axis=1) - data[['Low','Open']].min(axis=1) # Current day range in points
data['RangePct'] = data['Range'] / data['Close']
data['VIXLevel'] = pd.qcut(data['Close_VIX'], 4)
data['OHLC4_VIX'] = data[['Open_VIX','High_VIX','Low_VIX','Close_VIX']].mean(axis=1)
data['OHLC4'] = data[['Open','High','Low','Close']].mean(axis=1)
data['OHLC4_Trend'] = data['OHLC4'] > data['OHLC4'].shift(1)
data['OHLC4_Trend_n1'] = data['OHLC4_Trend'].shift(1)
data['OHLC4_Trend_n1'] = data['OHLC4_Trend_n1'].astype(float)
data['OHLC4_Trend_n2'] = data['OHLC4_Trend'].shift(1)
data['OHLC4_Trend_n2'] = data['OHLC4_Trend_n2'].astype(float)
data['RangePct_n1'] = data['RangePct'].shift(1)
data['RangePct_n2'] = data['RangePct'].shift(2)
data['OHLC4_VIX_n1'] = data['OHLC4_VIX'].shift(1)
data['OHLC4_VIX_n2'] = data['OHLC4_VIX'].shift(2)
data['CurrentGap'] = (data['Open'] - data['PrevClose']) / data['PrevClose']
data['CurrentGap'] = data['CurrentGap'].shift(-1)
data['DayOfWeek'] = pd.to_datetime(data.index)
data['DayOfWeek'] = data['DayOfWeek'].dt.day
# Target -- the next day's low
data['Target'] = (data['OHLC4'] / data['PrevClose']) - 1
data['Target'] = data['Target'].shift(-1)
# data['Target'] = data['RangePct'].shift(-1)
# Target for clf -- whether tomorrow will close above or below today's close
data['Target_clf'] = data['Close'] > data['PrevClose']
data['Target_clf'] = data['Target_clf'].shift(-1)
data['DayOfWeek'] = pd.to_datetime(data.index)
data['Quarter'] = data['DayOfWeek'].dt.quarter
data['DayOfWeek'] = data['DayOfWeek'].dt.weekday
for rid in tqdm(release_ids, desc='Merging econ data'):
# Get the name of the release
n = releases[rid]['name']
# Merge the corresponding DF of the release
data = data.merge(releases[rid]['df'], how = 'left', left_index=True, right_index=True)
# Create a column that shifts the value in the merged column up by 1
data[f'{n}_shift'] = data[n].shift(-1)
# Fill the rest with zeroes
data[n] = data[n].fillna(0)
data[f'{n}_shift'] = data[f'{n}_shift'].fillna(0)
data['BigNewsDay'] = data[[x for x in data.columns if '_shift' in x]].max(axis=1)
def cumul_sum(col):
nums = []
s = 0
for x in col:
if x == 1:
s += 1
elif x == 0:
s = 0
nums.append(s)
return nums
consec_green = cumul_sum(data['GreenDay'].values)
consec_red = cumul_sum(data['RedDay'].values)
data['DaysGreen'] = consec_green
data['DaysRed'] = consec_red
final_row = data.index[-2]
exp_row = data.index[-1]
df_final = data.loc[:final_row,
[
'BigNewsDay',
'Quarter',
'Perf5Day',
'Perf5Day_n1',
'DaysGreen',
'DaysRed',
# 'OHLC4_Trend',
# 'OHLC4_Trend_n1',
# 'OHLC4_Trend_n2',
# 'VIX5Day',
# 'VIX5Day_n1',
'CurrentGap',
'RangePct',
'RangePct_n1',
'RangePct_n2',
'OHLC4_VIX',
'OHLC4_VIX_n1',
'OHLC4_VIX_n2',
'Target',
'Target_clf'
]]
df_final = df_final.dropna(subset=['Target','Target_clf','Perf5Day_n1'])
return data, df_final, final_row
st.set_page_config(
page_title="Gameday Model for $SPX",
page_icon="๐ฎ"
)
st.title('๐ฎ Gameday Model for $SPX')
st.markdown('**PLEASE NOTE:** Model should be run at or after market open. Documentation and information about model coming soon.')
if st.button("๐งน Clear All"):
st.cache_data.clear()
if st.button('๐ค Run it'):
with st.spinner('Loading data...'):
data, df_final, final_row = get_data()
# st.success("โ
Historical data")
with st.spinner("Training models..."):
def train_models():
res1, xgbr, seq2 = walk_forward_validation_seq(df_final.dropna(), 'Target_clf', 'Target', 100, 1)
return res1, xgbr, seq2
res1, xgbr, seq2 = train_models()
# st.success("โ
Models trained")
with st.spinner("Getting new prediction..."):
# Get last row
new_pred = data.loc[final_row, ['BigNewsDay',
'Quarter',
'Perf5Day',
'Perf5Day_n1',
'DaysGreen',
'DaysRed',
# 'OHLC4_Trend',
# 'OHLC4_Trend_n1',
# 'OHLC4_Trend_n2',
# 'VIX5Day',
# 'VIX5Day_n1',
'CurrentGap',
'RangePct',
'RangePct_n1',
'RangePct_n2',
'OHLC4_VIX',
'OHLC4_VIX_n1',
'OHLC4_VIX_n2']]
new_pred = pd.DataFrame(new_pred).T
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
curr_date = final_row + BDay(1)
curr_date = curr_date.strftime('%Y-%m-%d')
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
# new_pred['OHLC4_Trend'] = new_pred['OHLC4_Trend'].astype(float)
# new_pred['OHLC4_Trend_n1'] = new_pred['OHLC4_Trend_n1'].astype(float)
# new_pred['OHLC4_Trend_n2'] = new_pred['OHLC4_Trend_n2'].astype(float)
# new_pred['VIX5Day'] = new_pred['VIX5Day'].astype(bool)
# new_pred['VIX5Day_n1'] = new_pred['VIX5Day_n1'].astype(bool)
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
st.success("โ
All done!")
tab1, tab2, tab3, tab4 = st.tabs(["๐ฎ Prediction", "โจ New Data", "๐ Historical", "๐ Performance"])
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
# above_pct_green = res1.loc[res1['Predicted'] >= seq_proba, 'True'].mean()
# len_above_pct_green = len(res1.loc[res1['Predicted'] >= seq_proba])
# below_pct_red = 1 - res1.loc[res1['Predicted'] <= seq_proba, 'True'].mean()
# len_below_pct_red = len(res1.loc[res1['Predicted'] <= seq_proba])
# Calc green and red probas
green_proba = seq_proba[0]
red_proba = 1 - green_proba
do_not_play = (seq_proba[0] > 0.4) and (seq_proba[0] <= 0.6)
stdev = 0.01
score = None
num_obs = None
cond = None
historical_proba = None
text_cond = None
operator = None
if do_not_play:
text_cond = '๐จ'
operator = ''
score = seq_proba[0]
cond = (res1['Predicted'] > 0.4) & (res1['Predicted'] <= 0.6)
num_obs = len(res1.loc[cond])
historical_proba = res1.loc[cond, 'True'].mean()
elif green_proba > red_proba:
# If the day is predicted to be green, say so
text_cond = '๐ฉ'
operator = '>='
score = green_proba
# How many with this score?
cond = (res1['Predicted'] >= green_proba)
num_obs = len(res1.loc[cond])
# How often green?
historical_proba = res1.loc[cond, 'True'].mean()
# print(cond)
elif green_proba <= red_proba:
# If the day is predicted to be green, say so
text_cond = '๐ฅ'
operator = '<='
score = red_proba
# How many with this score?
cond = (res1['Predicted'] <= red_proba)
num_obs = len(res1.loc[cond])
# How often green?
historical_proba = 1 - res1.loc[cond, 'True'].mean()
# print(cond)
score_fmt = f'{score:.1%}'
results = pd.DataFrame(index=[
'PrevClose',
'Confidence Score',
'Success Rate',
f'NumObs {operator} {"" if do_not_play else score_fmt}',
], data = [
f"{data.loc[final_row,'Close']:.2f}",
f'{text_cond} {score:.1%}',
f'{historical_proba:.1%}',
num_obs,
])
results.columns = ['Outputs']
# st.subheader('New Prediction')
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
df_probas = res1.groupby(pd.cut(res1['Predicted'],[-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf])).agg({'True':[np.mean,len,np.sum]})
df_probas.columns = ['PctGreen','NumObs','NumGreen']
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
precision_score_all = precision_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
recall_score_all = recall_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
len_all = len(res1)
res2_filtered = res1.loc[(res1['Predicted'] > 0.6) | (res1['Predicted'] <= 0.4)]
roc_auc_score_hi = roc_auc_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'].values)
precision_score_hi = precision_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
recall_score_hi = recall_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
len_hi = len(res2_filtered)
df_performance = pd.DataFrame(
index=[
'N',
'ROC AUC',
'Precision',
'Recall'
],
columns = [
'All',
'High Confidence'
],
data = [
[len_all, len_hi],
[roc_auc_score_all, roc_auc_score_hi],
[precision_score_all, precision_score_hi],
[recall_score_all, recall_score_hi]
]
).round(2)
def get_acc(t, p):
if t == False and p <= 0.4:
return 'โ
'
elif t == True and p > 0.6:
return 'โ
'
elif t == False and p > 0.6:
return 'โ'
elif t == True and p <= 0.4:
return 'โ'
else:
return '๐จ'
perf_daily = res1.copy()
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
tab1.subheader(f'Pred for {curr_date}')
tab1.write(results)
tab1.write(df_probas)
tab2.subheader('Latest Data for Pred')
tab2.write(new_pred)
tab3.subheader('Historical Data')
tab3.write(df_final)
tab4.subheader('Performance')
tab4.write(df_performance)
tab4.write(perf_daily)
# The only variable you can play with as the other ones are historical
# new_pred.loc[:,'CurrentGap'] = -0.01 / 100
# new_pred.loc[:,'BigNewsDay'] = 0
# st.subheader('Subset')
# st.write(data.iloc[-1])
# st.subheader('Number of pickups by hour')
# hist_values = np.histogram(
# data[DATE_COLUMN].dt.hour, bins=24, range=(0,24))[0]
# st.bar_chart(hist_values) |