Spaces:
Sleeping
Sleeping
File size: 4,046 Bytes
dc54faf c34df49 56abc69 70b610d c34df49 69c15f2 c34df49 6e9cf31 c34df49 70b610d dc54faf ee2bff4 c34df49 4ec8b91 0bc15db 4ec8b91 c34df49 d061b72 c673c9d c34df49 c673c9d c34df49 ebaf7f4 70b610d 0bc15db 4ec8b91 0bc15db f6305a7 ee2bff4 f6305a7 9838c31 f6305a7 70b610d 0bc15db c34df49 f6305a7 0bc15db f6305a7 0bc15db f6305a7 c34df49 9838c31 dc54faf c34df49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import gradio as gr
from gpt4all import GPT4All
from huggingface_hub import hf_hub_download
import faiss
#from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
import numpy as np
from pypdf import PdfReader
from gradio_pdf import PDF
from pdf2image import convert_from_path
from transformers import pipeline
from pathlib import Path
from langchain_chroma import Chroma
title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware"
description = """
🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all).
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue.
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing).
"""
"""
[Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing)
"""
model_path = "models"
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
print("Start the model init process")
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
model.config["promptTemplate"] = "[INST] {0} [/INST]"
model.config["systemPrompt"] = "Tu es un assitant et tu dois répondre en français"
model._is_chat_session_activated = False
max_new_tokens = 2048
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
chunk_size = 500
# creating a pdf reader object
print("Finish the model init process")
def get_text_embedding(text):
return embeddings.embed_query(text)
reader = PdfReader("/resource/NGAP 01042024.pdf")
text = []
for p in np.arange(0, len(reader.pages), 1):
page = reader.pages[int(p)]
# extracting text from page
text.append(page.extract_text())
text = ' '.join(text)
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
text_embeddings = np.array([get_text_embedding(chunk) for chunk in chunks])
d = text_embeddings.shape[1]
index = faiss.IndexFlatL2(d)
index.add(text_embeddings)
def extract_text(file):
reader = PdfReader(file)
text = []
for p in np.arange(0, len(reader.pages), 1):
page = reader.pages[int(p)]
# extracting text from page
text.append(page.extract_text())
text = ' '.join(text)
return text
def qa(question):
question_embeddings = np.array([get_text_embedding(question)])
D, I = index.search(question_embeddings, k=1) # distance, index
retrieved_chunk = [chunks[i] for i in I.tolist()[0]]
prompt = f"""
Context information is below.
---------------------
{retrieved_chunk}
---------------------
Given the context information and not prior knowledge, answer the query.
Query: {question}
Answer:
"""
return prompt
def test_func(text):
return len(text_embeddings)
with gr.Blocks() as demo:
question_input = gr.Textbox(label="Question")
qa_button = gr.Button("Click to qa")
promp_output = gr.Textbox(label="prompt")
qa_button.click(test_func, question_input, promp_output)
if __name__ == "__main__":
demo.queue(max_size=3).launch() |