File size: 4,046 Bytes
dc54faf
c34df49
 
 
 
 
 
 
56abc69
70b610d
 
 
c34df49
 
 
 
 
 
 
 
 
 
 
 
 
 
69c15f2
c34df49
 
6e9cf31
c34df49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70b610d
dc54faf
ee2bff4
c34df49
 
 
 
 
 
 
4ec8b91
 
 
 
0bc15db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ec8b91
c34df49
 
 
 
d061b72
c673c9d
 
c34df49
 
 
 
 
c673c9d
c34df49
ebaf7f4
70b610d
0bc15db
4ec8b91
0bc15db
f6305a7
 
 
ee2bff4
f6305a7
 
 
 
 
 
 
 
 
 
 
9838c31
f6305a7
70b610d
0bc15db
 
 
c34df49
f6305a7
0bc15db
 
 
f6305a7
 
 
0bc15db
f6305a7
c34df49
9838c31
dc54faf
c34df49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
from gpt4all import GPT4All
from huggingface_hub import hf_hub_download
import faiss
#from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
import numpy as np
from pypdf import PdfReader
from gradio_pdf import PDF
from pdf2image import convert_from_path
from transformers import pipeline
from pathlib import Path
from langchain_chroma import Chroma

title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware"

description = """
🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all). 
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue. 
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing). 
"""

"""
[Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing)
"""

model_path = "models"
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"

hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)

print("Start the model init process")
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")


model.config["promptTemplate"] = "[INST] {0} [/INST]"
model.config["systemPrompt"] = "Tu es un assitant et tu dois répondre en français"
model._is_chat_session_activated = False

max_new_tokens = 2048

model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(
    
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)

chunk_size = 500

# creating a pdf reader object



print("Finish the model init process")

def get_text_embedding(text):

    return embeddings.embed_query(text)

reader = PdfReader("/resource/NGAP 01042024.pdf")

text = []
for p in np.arange(0, len(reader.pages), 1):
    page = reader.pages[int(p)]

    # extracting text from page
    text.append(page.extract_text())

    text = ' '.join(text)

chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]

text_embeddings = np.array([get_text_embedding(chunk) for chunk in chunks])

d = text_embeddings.shape[1]
index = faiss.IndexFlatL2(d)
index.add(text_embeddings)


def extract_text(file):

    
    reader = PdfReader(file)

    text = []
    for p in np.arange(0, len(reader.pages), 1):
        page = reader.pages[int(p)]

        # extracting text from page
        text.append(page.extract_text())

    text = ' '.join(text)

    return text

def qa(question):

    

    question_embeddings = np.array([get_text_embedding(question)])

    D, I = index.search(question_embeddings, k=1) # distance, index
    retrieved_chunk = [chunks[i] for i in I.tolist()[0]]

    prompt = f"""
        Context information is below.
        ---------------------
        {retrieved_chunk}
        ---------------------
        Given the context information and not prior knowledge, answer the query.
        Query: {question}
        Answer:
        """
    
    return prompt

def test_func(text):
    return len(text_embeddings)

with gr.Blocks() as demo:
    
    question_input = gr.Textbox(label="Question")
    qa_button = gr.Button("Click to qa")
        
    promp_output = gr.Textbox(label="prompt")

    
    qa_button.click(test_func, question_input, promp_output)
    
    

if __name__ == "__main__":
    demo.queue(max_size=3).launch()