Spaces:
Running
Running
File size: 25,800 Bytes
ebfe12f 705238e ebfe12f 705238e ebfe12f 705238e ebfe12f 705238e ebfe12f eee3139 ebfe12f 84bd5f3 ebfe12f 84bd5f3 ebfe12f 84bd5f3 ebfe12f 84bd5f3 563af6e ebfe12f 705238e ebfe12f 705238e ebfe12f 84bd5f3 ebfe12f 84bd5f3 ebfe12f 84bd5f3 ebfe12f b2fda6c 84bd5f3 705238e 708f832 84bd5f3 cc62cdb 84bd5f3 b2fda6c 84bd5f3 ebfe12f 84bd5f3 0c3e842 708f832 84bd5f3 cc62cdb 84bd5f3 ebfe12f 84bd5f3 ebfe12f 84bd5f3 ebfe12f 84bd5f3 ebfe12f fda67f2 84bd5f3 ebfe12f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
import random
import gradio as gr
import time, os
import numpy as np
import torch
from tqdm import tqdm, trange
from PIL import Image
def random_clip(x, min=-1.3, max=1.3):
if isinstance(x, np.ndarray):
return np.clip(x, min, max)
elif isinstance(x, torch.Tensor):
return torch.clip(x, min, max)
else:
raise TypeError(f"type of x is {type(x)}")
class Sampler:
def __init__(self, device, normal_t):
self.device = device
self.total_step = 1000
self.normal_t = normal_t
self.afas_cumprod, self.betas = self.get_afa_bars("scaled_linear", # cosine,linear,scaled_linear
self.total_step)
self.afas_cumprod = torch.Tensor(self.afas_cumprod).to(self.device)
self.betas = torch.Tensor(self.betas).to(self.device)
def betas_for_alpha_bar(self, num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas)
def get_named_beta_schedule(self, schedule_name, num_diffusion_timesteps):
"""
Get a pre-defined beta schedule for the given name.
The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.
"""
if schedule_name == "linear":
# Linear schedule from Ho et al, extended to work for any number of
# diffusion steps.
scale = 1000 / num_diffusion_timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return np.linspace(
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
)
elif schedule_name == "scaled_linear":
scale = 1000 / num_diffusion_timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return np.linspace(
beta_start ** 0.5, beta_end ** 0.5, num_diffusion_timesteps, dtype=np.float64) ** 2
elif schedule_name == "cosine":
return self.betas_for_alpha_bar(
num_diffusion_timesteps,
lambda t: np.cos((t + 0.008) / 1.008 * np.pi / 2) ** 2,
)
else:
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
def get_afa_bars(self, beta_schedule_name, total_step):
"""
生成afa bar的列表,列表长度为total_step
:param beta_schedule_name: beta_schedule
:return: afa_bars和betas
"""
# if linear:
# # 线性
# betas = np.linspace(1e-5, 0.1, self.total_step)
#
# else:
# # sigmoid
# betas = np.linspace(-6, 6, self.total_step)
# betas = 1 / (1 + np.exp(betas)) * (afa_max - afa_min) + afa_min
betas = self.get_named_beta_schedule(schedule_name=beta_schedule_name,
num_diffusion_timesteps=total_step)
afas = 1 - betas
afas_cumprod = np.cumprod(afas)
# afas_cumprod = np.concatenate((np.array([1]), afas_cumprod[:-1]), axis=0)
return afas_cumprod, betas
# 重全噪声开始
@torch.no_grad()
def sample_loop(self, model, vae_middle_c, batch_size, step, eta, shape=(32, 32)):
pass
def apple_noise(self, data, step):
"""
添加噪声,返回xt和噪声
:param data: 数据,潜空间
:param step: 选择的步数
:return:
"""
data = data.to(self.device)
noise = torch.randn(size=data.shape).to(self.device)
afa_bar_t = self.afas_cumprod[step - 1]
x_t = torch.sqrt(afa_bar_t) * data + torch.sqrt(1 - afa_bar_t) * noise
return x_t
# 图生图
@torch.no_grad()
def sample_loop_img2img(self, input_img, model, vae_middle_c, batch_size, step, eta):
pass
@torch.no_grad()
def decode_img(self, vae, x0):
x0 = vae.decoder(x0)
res = x0.cpu().numpy()
if vae.middle_c == 8:
res = (res + 1) * 127.5
else:
res = res * 255
res = np.transpose(res, [0, 2, 3, 1]) # RGB
res = np.clip(res, 0, 255)
res = np.array(res, dtype=np.uint8)
return res
@torch.no_grad()
def encode_img(self, vae, x0):
mu, _ = vae.encoder(x0)
return mu
class DDIMSampler(Sampler):
def __init__(self, device, normal_t):
super(DDIMSampler, self).__init__(device, normal_t)
# self.afas_cumprod, self.betas = self.get_afa_bars("scaled_linear",
# self.total_step) # cosine,linear,scaled_linear
# self.afas_cumprod = torch.Tensor(self.afas_cumprod).to(self.device)
# self.betas = torch.Tensor(self.betas).to(self.device)
@torch.no_grad()
def sample(self, model, x, t, next_t, eta):
"""
:param model:
:param x:
:param t: 属于[1,1000]
:return:
"""
t_ = torch.ones((x.shape[0], 1)) * t
t_ = t_.to(self.device)
if self.normal_t:
t_ = t_ / self.total_step
epsilon = model(x, t_)
# 把t转成index
t = int(t - 1)
next_t = int(next_t - 1)
if t > 1:
# pred_x0=(x-sqrt(1-afa_t_bar)ε)/(sqrt(afa_t_bar))
prede_x0 = (x - torch.sqrt(1 - self.afas_cumprod[t]) * epsilon) / torch.sqrt(self.afas_cumprod[t])
x_t_1 = torch.sqrt(self.afas_cumprod[next_t]) * prede_x0
delta = eta * torch.sqrt((1 - self.afas_cumprod[next_t]) / (1 - self.afas_cumprod[t])) * torch.sqrt(
1 - self.afas_cumprod[t] / self.afas_cumprod[next_t])
x_t_1 = x_t_1 + torch.sqrt(1 - self.afas_cumprod[next_t] - delta ** 2) * epsilon
x_t_1 = delta * random_clip(torch.randn_like(x)) + x_t_1
else:
coeff = self.betas[t] / (torch.sqrt(1 - self.afas_cumprod[t])) # + 1e-5
x_t_1 = (1 / torch.sqrt(1 - self.betas[t])) * (x - coeff * epsilon)
return x_t_1
@torch.no_grad()
def sample_loop(self, model, vae_middle_c, batch_size, step, eta, shape=(32, 32)):
if step < 1000 and False:
# 分两端均匀取子集
# 1k步中的前35%用指定推理步数的50%
big_steps = self.total_step * (1 - 0.4)
big_ = int(step * 0.6)
steps = np.linspace(self.total_step, big_steps, big_)
steps = np.concatenate([steps, np.linspace(big_steps + int(steps[1] - steps[0]), 1, step - big_)],
axis=0)
else:
# 均匀取子集
steps = np.linspace(self.total_step, 1, step)
steps = np.floor(steps)
steps = np.concatenate((steps, steps[-1:]), axis=0)
x_t = random_clip(torch.randn((batch_size, vae_middle_c, *shape))).to(self.device) # 32, 32
for i in range(len(steps) - 1):
x_t = self.sample(model, x_t, steps[i], steps[i + 1], eta)
yield x_t
@torch.no_grad()
def sample_loop_img2img(self, input_img_latents, noise_steps, model, vae_middle_c, batch_size, step, eta):
noised_latents = self.apple_noise(input_img_latents, noise_steps) # (1,4,32,32)
step = min(noise_steps, step)
if step < 1000 and False:
# 分两端均匀取子集
# 1k步中的前20%用指定推理步数的50%
big_steps = noise_steps * (1 - 0.3)
big_ = int(step * 0.5)
steps = np.linspace(noise_steps, big_steps, big_)
steps = np.concatenate([steps, np.linspace(big_steps + int(steps[1] - steps[0]), 1, step - big_)],
axis=0)
else:
# 均匀取子集
# print(noise_steps, 1, step)
steps = np.linspace(noise_steps, 1, step)
# print("steps", len(steps))
steps = np.floor(steps)
# steps = np.concatenate((steps, steps[-1:]), axis=0)
x_t = torch.tile(noised_latents, (batch_size, 1, 1, 1)).to(self.device) # 32, 32
for i in trange(len(steps) - 1):
x_t = self.sample(model, x_t, steps[i], steps[i + 1], eta)
yield x_t
class EulerDpmppSampler(Sampler):
def __init__(self, device, normal_t):
super(EulerDpmppSampler, self).__init__(device, normal_t)
self.sample_fun = self.sample_dpmpp_2m
@staticmethod
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
# 4e-5 0.99
@staticmethod
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cuda'):
"""Constructs the noise schedule of Karras et al. (2022)."""
ramp = torch.linspace(0, 1, n)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return EulerDpmppSampler.append_zero(sigmas).to(device)
@staticmethod
def default_noise_sampler(x):
return lambda sigma, sigma_next: torch.randn_like(x)
@staticmethod
def get_ancestral_step(sigma_from, sigma_to, eta=1.):
"""Calculates the noise level (sigma_down) to step down to and the amount
of noise to add (sigma_up) when doing an ancestral sampling step."""
if not eta:
return sigma_to, 0.
sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
return sigma_down, sigma_up
@staticmethod
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
return x[(...,) + (None,) * dims_to_append]
@staticmethod
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / EulerDpmppSampler.append_dims(sigma, x.ndim)
@staticmethod
def to_denoised(x, sigma, d):
return x - d * EulerDpmppSampler.append_dims(sigma, x.ndim)
@torch.no_grad()
def sample_euler_ancestral(self, model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1.,
noise_sampler=None):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = EulerDpmppSampler.default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0], 1])
for i in trange(len(sigmas) - 1, disable=disable):
t = sigmas[i] * (1 - 1 / self.total_step) + 1 / self.total_step
t = torch.floor(t * self.total_step) # 不归一化t需要输入整数
afa_bar_t = self.afas_cumprod[int(t) - 1] # 获得加噪用的afa bar
if self.normal_t:
t = t / self.total_step
t = t * s_in
output = model(x, t, **extra_args)
denoised = (x - torch.sqrt(1 - afa_bar_t) * output) / torch.sqrt(afa_bar_t)
sigma_down, sigma_up = self.get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d = self.to_d(x, sigmas[i], denoised)
# d = denoised
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
yield x
# return x
@torch.no_grad()
def sample_dpmpp_2m(self, model, x, sigmas, extra_args=None, callback=None, disable=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0], 1])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
old_denoised = None
for i in trange(len(sigmas) - 1, disable=disable):
t = sigmas[i] * (1 - 1 / self.total_step) + 1 / self.total_step
t = torch.floor(t * self.total_step) # 不归一化t需要输入整数
afa_bar_t = self.afas_cumprod[int(t) - 1] # 获得加噪用的afa bar
if self.normal_t:
t = t / self.total_step
t = t * s_in
output = model(x, t, **extra_args)
denoised = (x - torch.sqrt(1 - afa_bar_t) * output) / torch.sqrt(afa_bar_t)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None or sigmas[i + 1] == 0:
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
old_denoised = denoised
yield x
def switch_sampler(self, sampler_name):
if sampler_name == "euler a":
self.sample_fun = self.sample_euler_ancestral
elif sampler_name == "dpmpp 2m":
self.sample_fun = self.sample_dpmpp_2m
else:
self.sample_fun = self.sample_euler_ancestral
def sample_loop(self, model, vae_middle_c, batch_size, step, eta, shape=(32, 32)):
x = torch.randn((batch_size, vae_middle_c, 32, 32)).to(device)
sigmas = self.get_sigmas_karras(step, 1e-5, 0.999, device=device)
# sigmas = self.get_named_beta_schedule("scaled_linear", step)
looper = self.sample_fun(unet, x, sigmas)
for _ in trange(len(sigmas) - 1):
x_t = next(looper)
yield x_t
class PretrainVae:
def __init__(self, device):
from diffusers import AutoencoderKL, DiffusionPipeline
self.vae = AutoencoderKL.from_pretrained("gsdf/Counterfeit-V2.5", # segmind/small-sd
subfolder="vae",
cache_dir="./vae/pretrain_vae").to(device)
self.vae.requires_grad_(False)
self.middle_c = 4
self.vae_scaleing = 0.18215
def encoder(self, x):
latents = self.vae.encode(x)
latents = latents.latent_dist
mean = latents.mean * self.vae_scaleing
var = latents.var * self.vae_scaleing
return mean, var
def decoder(self, latents):
latents = latents / self.vae_scaleing
output = self.vae.decode(latents).sample
return output
# 释放encoder
def res_encoder(self):
del self.vae.encoder
torch.cuda.empty_cache()
# ================================================================
def merge_images(images: np.ndarray):
"""
合并图像
:param images: 图像数组
:return: 合并后的图像数组
"""
n, h, w, c = images.shape
nn = int(np.ceil(n ** 0.5))
merged_image = np.zeros((h * nn, w * nn, 3), dtype=images.dtype)
for i in range(n):
row = i // nn
col = i % nn
merged_image[row * h:(row + 1) * h, col * w:(col + 1) * w, :] = images[i]
merged_image = np.clip(merged_image, 0, 255)
merged_image = np.array(merged_image, dtype=np.uint8)
return merged_image
def get_models(device):
def modelLoad(model, model_path, data_parallel=False):
if str(device) == "cuda":
model.load_state_dict(torch.load(model_path), strict=True)
else:
model.load_state_dict(torch.load(model_path, map_location='cpu'), strict=True)
if data_parallel:
model = torch.nn.DataParallel(model)
return model
from net.UNet import UNet
config = {
# 模型结构相关
"en_out_c": (256, 256, 256, 320, 320, 320, 576, 576, 576, 704, 704, 704),
"en_down": (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),
"en_skip": (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1),
"en_att_heads": (8, 8, 8, 0, 8, 8, 0, 8, 8, 0, 8, 8),
"de_out_c": (704, 576, 576, 576, 320, 320, 320, 256, 256, 256, 256),
"de_up": ("none", "subpix", "none", "none", "subpix", "none", "none", "subpix", "none", "none", "none"),
"de_skip": (1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),
"de_att_heads": (8, 8, 0, 8, 8, 0, 8, 8, 0, 8, 8), # skip的地方不做self-attention
"t_out_c": 256,
"vae_c": 4,
"block_deep": 3,
"use_pretrain_vae": True,
"normal_t": True,
"model_save_path": "./weight",
"model_name": "unet",
"model_tail": "ema",
}
print("加载模型...")
unet = UNet(config["en_out_c"], config["en_down"], config["en_skip"], config["en_att_heads"],
config["de_out_c"], config["de_up"], config["de_skip"], config["de_att_heads"],
config["t_out_c"], config["vae_c"], config["block_deep"]).to(device)
unet = modelLoad(unet, os.path.join(config["model_save_path"],
f"{config['model_name']}_{config['model_tail']}.pth"))
vae = PretrainVae(device)
print("加载完成")
return unet, vae, config["normal_t"]
def init_webui(unet, vae, normal_t):
# 定义回调函数
def process_image(input_image_value, noise_step, step_value, batch_size, sampler_name, img_size, random_seed,
progress=gr.Progress()):
progress(0, desc="开始...")
setup_seed(int(random_seed))
noise_step = float(noise_step)
step_value = int(step_value)
batch_size = int(batch_size)
img_size = int(img_size) // 8
img_size = (img_size, img_size)
if sampler_name == "DDIM":
sampler = DDIMSampler(device, normal_t)
elif sampler_name == "euler a" or sampler_name == "dpmpp 2m":
sampler = EulerDpmppSampler(device, normal_t)
sampler.switch_sampler(sampler_name)
else:
raise ValueError(f"Unknow sampler_name: {sampler_name}")
if input_image_value is None:
looper = sampler.sample_loop(unet, vae.middle_c, batch_size, step_value, shape=img_size, eta=1.)
else:
input_image_value = Image.fromarray(input_image_value).resize((img_size[0] * 8, img_size[1] * 8),
resample=Image.BILINEAR)
input_image_value = np.array(input_image_value, dtype=np.float32) / 255.
input_image_value = np.transpose(input_image_value, (2, 0, 1))
input_image_value = torch.Tensor([input_image_value]).to(device)
input_img_latents = sampler.encode_img(vae, input_image_value)
looper = sampler.sample_loop_img2img(input_img_latents,
int(noise_step * sampler.total_step),
unet,
vae.middle_c,
batch_size,
step_value,
eta=1.)
# print(step_value)
ss = 0
for i in progress.tqdm(range(1, step_value + 1)):
try:
output = next(looper)
ss += 1
except StopIteration:
# print("StopIteration", ss)
break
output = sampler.decode_img(vae, output)
output = np.clip(output, 0, 255)
marge_img = merge_images(output)
output = [marge_img] + list(output)
return output
def process_image_u(step_value, batch_size, sampler_name, img_size, random_seed,
progress=gr.Progress()):
return process_image(None, 0, step_value, batch_size, sampler_name, img_size, random_seed,
progress)
with gr.Blocks() as iface:
gr.Markdown(
"This is a diffusion model for generating second-dimensional avatars, which can be used for unconditional generation or image-to-image generation.")
with gr.Tab(label="unconditional generation"):
with gr.Column():
with gr.Row():
# 选择sampler
sampler_name_u = gr.Dropdown(["DDIM"], label="sampler", value="DDIM") # , "euler a", "dpmpp 2m"
# 创建滑动条组件
step_u = gr.Slider(minimum=1, maximum=1000, value=40, label="steps", step=1)
batch_size_u = gr.Slider(minimum=1, maximum=4, label="batch size", step=1)
img_size_u = gr.Slider(minimum=256, maximum=512, value=256, label="img size", step=64)
ramdom_seed_u = gr.Number(value=-1, label="ramdom seed(-1 as random number)")
# 创建开始按钮组件
start_button_u = gr.Button(value="Run")
# 创建输出组件
output_images_u = gr.Gallery(show_label=False, height=400, columns=5)
gr.Examples(
examples=[[60, 4, "DDIM", 256, 255392]], # 255392
inputs=[step_u, batch_size_u, sampler_name_u, img_size_u, ramdom_seed_u],
outputs=output_images_u,
fn=process_image_u,
cache_examples=False,
)
with gr.Tab(label="image to image"):
with gr.Column():
with gr.Row():
with gr.Column():
# 创建输入组件
input_image = gr.Image(label="image to image")
# 加噪程度
noise_step = gr.Slider(minimum=0.05, maximum=1, value=0.6, label="加噪程度", step=0.01)
with gr.Column():
# 选择sampler
sampler_name = gr.Dropdown(["DDIM"], label="sampler", value="DDIM") # , "euler a", "dpmpp 2m"
# 创建滑动条组件
step = gr.Slider(minimum=1, maximum=1000, value=40, label="steps", step=1)
batch_size = gr.Slider(minimum=1, maximum=4, label="batch size", step=1)
img_size = gr.Slider(minimum=256, maximum=512, value=256, label="img size", step=64)
ramdom_seed = gr.Number(value=-1, label="ramdom seed(-1 as random number)")
# 创建开始按钮组件
start_button = gr.Button(value="Run")
# 创建输出组件
output_images = gr.Gallery(show_label=False, height=400, columns=5)
gr.Examples(
examples=[["./example.jpg", 0.4, 60, 4, "DDIM", 320, 231324]], # 224477,378754
inputs=[input_image, noise_step, step, batch_size, sampler_name, img_size, ramdom_seed],
outputs=output_images,
fn=process_image,
cache_examples=False,
)
start_button.click(process_image,
[input_image, noise_step, step, batch_size, sampler_name, img_size, ramdom_seed],
[output_images])
start_button_u.click(process_image_u, [step_u, batch_size_u, sampler_name_u, img_size_u, ramdom_seed_u],
[output_images_u])
return iface
def setup_seed(seed=0):
import random
if seed == -1:
seed = random.randint(0, 1000000)
print(seed)
torch.manual_seed(seed) # 为CPU设置随机种子
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
if torch.cuda.is_available():
# torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子
torch.cuda.manual_seed_all(seed) # 为所有GPU设置随机种子
# os.environ['PYTHONHASHSEED'] = str(seed)
if __name__ == '__main__':
device = torch.device('cpu')
# device = torch.device('cuda')
unet, vae, normal_t = get_models(device)
def run_with_ui(unet, vae, normal_t):
# 创建界面
iface = init_webui(unet, vae, normal_t)
# 运行界面
iface.queue().launch() #
run_with_ui(unet, vae, normal_t)
|