Spaces:
Paused
Paused
File size: 4,451 Bytes
87b2711 db47c8b 7c99e50 1ca62bc 87b2711 f52050f 7c99e50 f52050f db47c8b ea69d06 6082f24 f52050f 7c99e50 6082f24 f52050f 2fecabe 6082f24 f52050f ec4bd6c f52050f ec4bd6c db47c8b f52050f ea60bdd f52050f 87b2711 f52050f f23a76a f52050f 1c78289 f52050f 1c78289 f52050f 1c78289 f52050f 7c99e50 1c78289 f52050f 1c78289 f52050f 1c78289 f52050f 1c78289 f52050f 1c78289 6082f24 f52050f 6082f24 f52050f 6082f24 db47c8b ea60bdd 7c99e50 6082f24 7c99e50 6082f24 7c99e50 4222109 6082f24 7c99e50 6082f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import os
import tempfile
import gradio as gr
import numpy as np
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from ast import literal_eval
from PIL import Image
# Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
# Define your prompts
other_benifits = '''Extract the following information in the given format:
{'other_benefits_and_information': {
'401k eru: {'This Period':'', 'Year-to-Date':''}},
'quota summary':
{
'sick:': '',
'vacation:': '',
}
'payment method': 'eg. Direct payment',
'Amount': 'eg. 12.99'
}
'''
tax_deductions = '''Extract the following information in the given format:
{
'tax_deductions': {
'federal:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee social security tax:': {'Amount':'', 'Year-To_Date':""},
'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
'california:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee disability tax:': {'Amount':'', 'Year-To-Date':""}}},
}
'''
def process_document(image):
# Save the uploaded image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
image = Image.fromarray(image) # Convert NumPy array to PIL Image
image.save(tmp_file.name) # Save the image to the temporary file
image_path = tmp_file.name # Get the path of the saved file
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path, # Use the file path here
},
{"type": "text", "text": '''Extract the following information in the given format:
{
'tax_deductions': {
'federal:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee social security tax:': {'Amount':'', 'Year-To_Date':""},
'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
'california:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee disability tax:': {'Amount':'', 'Year-To-Date':""}}},
}
'''},
],
}
]
print("1")
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
print("2")
image_inputs, video_inputs = process_vision_info(messages)
print("3")
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
print("4")
inputs = inputs.to("cuda")
print("5")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1500)
print("6")
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
print("7")
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("8")
# Handle output text to convert it into JSON
try:
almost_json = output_text[0].split('\n')[-1].split('\n')[0]
json = literal_eval(almost_json)
except:
json = output_text[0] # Return raw output if JSON parsing fails
# Optionally, you can delete the temporary file after use
os.remove(image_path)
return json
# Create Gradio interface
demo = gr.Interface(
fn=process_document,
inputs="image", # Gradio will handle the image input
outputs="json",
title="PaySlip_Demo_Model",
examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
cache_examples=False
)
demo.launch()
|