Spaces:
Running
Running
import pandas as pd | |
import streamlit as st | |
import json | |
from langchain_openai import ChatOpenAI | |
from meta_prompt.sample_generator import TaskDescriptionGenerator | |
def process_json(input_json, model_name, generating_batch_size, temperature): | |
try: | |
model = ChatOpenAI( | |
model=model_name, temperature=temperature, max_retries=3) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.process(input_json, generating_batch_size) | |
description = result["description"] | |
suggestions = result["suggestions"] | |
examples_directly = [[example["input"], example["output"]] | |
for example in result["examples_directly"]["examples"]] | |
input_analysis = result["examples_from_briefs"]["input_analysis"] | |
new_example_briefs = result["examples_from_briefs"]["new_example_briefs"] | |
examples_from_briefs = [[example["input"], example["output"]] | |
for example in result["examples_from_briefs"]["examples"]] | |
examples = [[example["input"], example["output"]] | |
for example in result["additional_examples"]] | |
return description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples | |
except Exception as e: | |
st.warning(f"An error occurred: {str(e)}. Returning default values.") | |
return "", [], [], "", [], [], [] | |
def generate_description_only(input_json, model_name, temperature): | |
try: | |
model = ChatOpenAI( | |
model=model_name, temperature=temperature, max_retries=3) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.generate_description(input_json) | |
description = result["description"] | |
suggestions = result["suggestions"] | |
return description, suggestions | |
except Exception as e: | |
st.warning(f"An error occurred: {str(e)}") | |
return "", [] | |
def analyze_input(description, model_name, temperature): | |
try: | |
model = ChatOpenAI( | |
model=model_name, temperature=temperature, max_retries=3) | |
generator = TaskDescriptionGenerator(model) | |
input_analysis = generator.analyze_input(description) | |
return input_analysis | |
except Exception as e: | |
st.warning(f"An error occurred: {str(e)}") | |
return "" | |
def generate_briefs(description, input_analysis, generating_batch_size, model_name, temperature): | |
try: | |
model = ChatOpenAI( | |
model=model_name, temperature=temperature, max_retries=3) | |
generator = TaskDescriptionGenerator(model) | |
briefs = generator.generate_briefs( | |
description, input_analysis, generating_batch_size) | |
return briefs | |
except Exception as e: | |
st.warning(f"An error occurred: {str(e)}") | |
return "" | |
def generate_examples_from_briefs(description, new_example_briefs, input_str, generating_batch_size, model_name, temperature): | |
try: | |
model = ChatOpenAI( | |
model=model_name, temperature=temperature, max_retries=3) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.generate_examples_from_briefs( | |
description, new_example_briefs, input_str, generating_batch_size) | |
examples = [[example["input"], example["output"]] | |
for example in result["examples"]] | |
return examples | |
except Exception as e: | |
st.warning(f"An error occurred: {str(e)}") | |
return [] | |
def generate_examples_directly(description, raw_example, generating_batch_size, model_name, temperature): | |
try: | |
model = ChatOpenAI( | |
model=model_name, temperature=temperature, max_retries=3) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.generate_examples_directly( | |
description, raw_example, generating_batch_size) | |
examples = [[example["input"], example["output"]] | |
for example in result["examples"]] | |
return examples | |
except Exception as e: | |
st.warning(f"An error occurred: {str(e)}") | |
return [] | |
def example_directly_selected(): | |
if 'selected_example_directly_id' in st.session_state: | |
try: | |
selected_example_ids = st.session_state.selected_example_directly_id[ | |
'selection']['rows'] | |
# set selected examples to the selected rows if there are any | |
if selected_example_ids: | |
selected_examples = st.session_state.examples_directly_dataframe.iloc[selected_example_ids].to_dict( | |
'records') | |
st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame | |
else: | |
st.session_state.selected_example = None | |
except Exception as e: | |
st.session_state.selected_example = None | |
def example_from_briefs_selected(): | |
if 'selected_example_from_briefs_id' in st.session_state: | |
try: | |
selected_example_ids = st.session_state.selected_example_from_briefs_id[ | |
'selection']['rows'] | |
# set selected examples to the selected rows if there are any | |
if selected_example_ids: | |
selected_examples = st.session_state.examples_from_briefs_dataframe.iloc[selected_example_ids].to_dict( | |
'records') | |
st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame | |
else: | |
st.session_state.selected_example = None | |
except Exception as e: | |
st.session_state.selected_example = None | |
def example_selected(): | |
if 'selected_example_id' in st.session_state: | |
try: | |
selected_example_ids = st.session_state.selected_example_id['selection']['rows'] | |
# set selected examples to the selected rows if there are any | |
if selected_example_ids: | |
selected_examples = st.session_state.examples_dataframe.iloc[selected_example_ids].to_dict( | |
'records') | |
st.session_state.selected_example = pd.DataFrame(selected_examples) # Convert to DataFrame | |
else: | |
st.session_state.selected_example = None | |
except Exception as e: | |
st.session_state.selected_example = None | |
# Session State | |
if 'shared_input_data' not in st.session_state: | |
st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"]) | |
if 'description_output_text' not in st.session_state: | |
st.session_state.description_output_text = '' | |
if 'suggestions' not in st.session_state: | |
st.session_state.suggestions = [] | |
if 'input_analysis_output_text' not in st.session_state: | |
st.session_state.input_analysis_output_text = '' | |
if 'example_briefs_output_text' not in st.session_state: | |
st.session_state.example_briefs_output_text = '' | |
if 'examples_from_briefs_dataframe' not in st.session_state: | |
st.session_state.examples_from_briefs_dataframe = pd.DataFrame(columns=[ | |
"Input", "Output"]) | |
if 'examples_directly_dataframe' not in st.session_state: | |
st.session_state.examples_directly_dataframe = pd.DataFrame( | |
columns=["Input", "Output"]) | |
if 'examples_dataframe' not in st.session_state: | |
st.session_state.examples_dataframe = pd.DataFrame( | |
columns=["Input", "Output"]) | |
if 'selected_example' not in st.session_state: | |
st.session_state.selected_example = None | |
def update_description_output_text(): | |
input_json = package_input_data() | |
result = generate_description_only(input_json, model_name, temperature) | |
st.session_state.description_output_text = result[0] | |
st.session_state.suggestions = result[1] | |
def update_input_analysis_output_text(): | |
st.session_state.input_analysis_output_text = analyze_input( | |
description_output, model_name, temperature) | |
def update_example_briefs_output_text(): | |
st.session_state.example_briefs_output_text = generate_briefs( | |
description_output, input_analysis_output, generating_batch_size, model_name, temperature) | |
def update_examples_from_briefs_dataframe(): | |
input_json = package_input_data() | |
examples = generate_examples_from_briefs( | |
description_output, example_briefs_output, input_json, generating_batch_size, model_name, temperature) | |
st.session_state.examples_from_briefs_dataframe = pd.DataFrame( | |
examples, columns=["Input", "Output"]) | |
def update_examples_directly_dataframe(): | |
input_json = package_input_data() | |
examples = generate_examples_directly( | |
description_output, input_json, generating_batch_size, model_name, temperature) | |
st.session_state.examples_directly_dataframe = pd.DataFrame( | |
examples, columns=["Input", "Output"]) | |
def generate_examples_dataframe(): | |
input_json = package_input_data() | |
result = process_json(input_json, model_name, | |
generating_batch_size, temperature) | |
description, suggestions, examples_directly, input_analysis, new_example_briefs, examples_from_briefs, examples = result | |
st.session_state.description_output_text = description | |
st.session_state.suggestions = suggestions # Ensure suggestions are stored in session state | |
st.session_state.examples_directly_dataframe = pd.DataFrame( | |
examples_directly, columns=["Input", "Output"]) | |
st.session_state.input_analysis_output_text = input_analysis | |
st.session_state.example_briefs_output_text = new_example_briefs | |
st.session_state.examples_from_briefs_dataframe = pd.DataFrame( | |
examples_from_briefs, columns=["Input", "Output"]) | |
st.session_state.examples_dataframe = pd.DataFrame( | |
examples, columns=["Input", "Output"]) | |
st.session_state.selected_example = None | |
def package_input_data(): | |
data = input_data.to_dict(orient='records') | |
lowered_data = [{k.lower(): v for k, v in d.items()} for d in data] | |
return json.dumps(lowered_data, ensure_ascii=False) | |
def export_input_data_to_json(): | |
input_data_json = package_input_data() | |
st.download_button( | |
label="Download input data as JSON", | |
data=input_data_json, | |
file_name="input_data.json", | |
mime="application/json" | |
) | |
def import_input_data_from_json(): | |
try: | |
if 'input_file' in st.session_state and st.session_state.input_file is not None: | |
data = st.session_state.input_file.getvalue() | |
data = json.loads(data) | |
data = [{k.capitalize(): v for k, v in d.items()} for d in data] | |
st.session_state.shared_input_data = pd.DataFrame(data) | |
except Exception as e: | |
st.warning(f"Failed to import JSON: {str(e)}") | |
def apply_suggestions(): | |
try: | |
result = TaskDescriptionGenerator( | |
ChatOpenAI(model=model_name, temperature=temperature, max_retries=3)).update_description( | |
package_input_data(), st.session_state.description_output_text, st.session_state.selected_suggestions) | |
st.session_state.description_output_text = result["description"] | |
st.session_state.suggestions = result["suggestions"] | |
except Exception as e: | |
st.warning(f"Failed to update description: {str(e)}") | |
def generate_suggestions(): | |
try: | |
description = st.session_state.description_output_text | |
input_json = package_input_data() | |
model = ChatOpenAI(model=model_name, temperature=temperature, max_retries=3) | |
generator = TaskDescriptionGenerator(model) | |
result = generator.generate_suggestions(input_json, description) | |
st.session_state.suggestions = result["suggestions"] | |
except Exception as e: | |
st.warning(f"Failed to generate suggestions: {str(e)}") | |
# Function to add new suggestion to the list and select it | |
def add_new_suggestion(): | |
if st.session_state.new_suggestion: | |
st.session_state.suggestions.append(st.session_state.new_suggestion) | |
st.session_state.new_suggestion = "" # Clear the input field | |
def sync_input_data(): | |
# st.session_state.meta_prompt_input_data = input_data.copy() | |
st.session_state.shared_input_data = input_data.copy() | |
def clear_session_state(): | |
st.session_state.shared_input_data = pd.DataFrame(columns=["Input", "Output"]) | |
st.session_state.description_output_text = '' | |
st.session_state.suggestions = [] | |
st.session_state.input_analysis_output_text = '' | |
st.session_state.example_briefs_output_text = '' | |
st.session_state.examples_from_briefs_dataframe = pd.DataFrame(columns=["Input", "Output"]) | |
st.session_state.examples_directly_dataframe = pd.DataFrame(columns=["Input", "Output"]) | |
st.session_state.examples_dataframe = pd.DataFrame(columns=["Input", "Output"]) | |
st.session_state.selected_example = None | |
# Streamlit UI | |
st.title("LLM Task Example Generator") | |
st.markdown("Enter input-output pairs in the table below to generate a task description, analysis, and additional examples.") | |
# Input column | |
input_data = st.data_editor( | |
st.session_state.shared_input_data, | |
# key="sample_generator_input_data", | |
num_rows="dynamic", | |
use_container_width=True, | |
column_config={ | |
"Input": st.column_config.TextColumn("Input", width="large"), | |
"Output": st.column_config.TextColumn("Output", width="large"), | |
}, | |
hide_index=False | |
) | |
with st.expander("Model Settings"): | |
col1, col2 = st.columns(2) | |
with col1: | |
input_file = st.file_uploader( | |
label="Import Input Data from JSON", | |
type="json", | |
key="input_file", | |
on_change=import_input_data_from_json | |
) | |
with col2: | |
export_button = st.button( # Add the export button | |
"Export Input Data to JSON", on_click=export_input_data_to_json | |
) | |
model_name = st.selectbox( | |
"Model Name", | |
["llama3-70b-8192", "llama3-8b-8192", "llama-3.1-70b-versatile", | |
"llama-3.1-8b-instant", "gemma2-9b-it"], | |
index=0 | |
) | |
temperature = st.slider("Temperature", 0.0, 1.0, 1.0, 0.1) | |
generating_batch_size = st.slider("Generating Batch Size", 1, 10, 3, 1) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
submit_button = st.button( | |
"Generate", type="primary", on_click=generate_examples_dataframe) | |
with col2: | |
sync_button = st.button( | |
"Sync Data", on_click=sync_input_data) | |
with col3: | |
clear_button = st.button( | |
"Clear", on_click=clear_session_state) | |
with st.expander("Description and Analysis"): | |
generate_description_button = st.button( | |
"Generate Description", on_click=update_description_output_text) | |
description_output = st.text_area( | |
"Description", value=st.session_state.description_output_text, height=100) | |
col3, col4, col5 = st.columns(3) | |
with col3: | |
generate_suggestions_button = st.button("Generate Suggestions", on_click=generate_suggestions) | |
with col4: | |
generate_examples_directly_button = st.button( | |
"Generate Examples Directly", on_click=update_examples_directly_dataframe) | |
with col5: | |
analyze_input_button = st.button( | |
"Analyze Input", on_click=update_input_analysis_output_text) | |
# Add multiselect for suggestions | |
selected_suggestions = st.multiselect( | |
"Suggestions", options=st.session_state.suggestions, key="selected_suggestions") | |
# Add button to apply suggestions | |
apply_suggestions_button = st.button("Apply Suggestions", on_click=apply_suggestions) | |
# Add text input for adding new suggestions | |
new_suggestion = st.text_input("Add New Suggestion", key="new_suggestion", on_change=add_new_suggestion) | |
examples_directly_output = st.dataframe(st.session_state.examples_directly_dataframe, use_container_width=True, | |
selection_mode="multi-row", key="selected_example_directly_id", | |
on_select=example_directly_selected, hide_index=False) | |
input_analysis_output = st.text_area( | |
"Input Analysis", value=st.session_state.input_analysis_output_text, height=100) | |
generate_briefs_button = st.button( | |
"Generate Briefs", on_click=update_example_briefs_output_text) | |
example_briefs_output = st.text_area( | |
"Example Briefs", value=st.session_state.example_briefs_output_text, height=100) | |
generate_examples_from_briefs_button = st.button( | |
"Generate Examples from Briefs", on_click=update_examples_from_briefs_dataframe) | |
examples_from_briefs_output = st.dataframe(st.session_state.examples_from_briefs_dataframe, use_container_width=True, | |
selection_mode="multi-row", key="selected_example_from_briefs_id", | |
on_select=example_from_briefs_selected, hide_index=False) | |
examples_output = st.dataframe(st.session_state.examples_dataframe, use_container_width=True, | |
selection_mode="multi-row", key="selected_example_id", on_select=example_selected, hide_index=True) | |
def append_selected_to_input_data(): | |
if st.session_state.selected_example is not None: | |
st.session_state.shared_input_data = pd.concat( | |
[input_data, st.session_state.selected_example], ignore_index=True) | |
st.session_state.selected_example = None | |
def show_sidebar(): | |
if st.session_state.selected_example is not None: | |
with st.sidebar: | |
st.dataframe(st.session_state.selected_example, hide_index=False) # Display DataFrame in sidebar | |
st.button("Append to Input Data", on_click=append_selected_to_input_data) | |
show_sidebar() | |