Spaces:
Sleeping
Sleeping
import json | |
import os | |
import pprint | |
import time | |
from random import randint | |
import psutil | |
import streamlit as st | |
import torch | |
from transformers import (AutoModelForCausalLM, AutoTokenizer, pipeline, | |
set_seed) | |
device = torch.cuda.device_count() - 1 | |
def load_model(model_name): | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
try: | |
if not os.path.exists(".streamlit/secrets.toml"): | |
raise FileNotFoundError | |
access_token = st.secrets.get("netherator") | |
except FileNotFoundError: | |
access_token = os.environ.get("HF_ACCESS_TOKEN", None) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, use_auth_token=access_token | |
) | |
if device != -1: | |
model.to(f"cuda:{device}") | |
return tokenizer, model | |
class StoryGenerator: | |
def __init__(self, model_name): | |
self.model_name = model_name | |
self.tokenizer = None | |
self.model = None | |
self.generator = None | |
self.model_loaded = False | |
def load(self): | |
if not self.model_loaded: | |
self.tokenizer, self.model = load_model(self.model_name) | |
self.generator = pipeline( | |
"text-generation", | |
model=self.model, | |
tokenizer=self.tokenizer, | |
device=device, | |
) | |
self.model_loaded = True | |
def get_text(self, text: str, **generate_kwargs) -> str: | |
return self.generator(text, **generate_kwargs) | |
STORY_GENERATORS = [ | |
{ | |
"model_name": "yhavinga/gpt-neo-125M-dutch-nedd", | |
"desc": "Dutch GPTNeo Small", | |
"story_generator": None, | |
}, | |
{ | |
"model_name": "yhavinga/gpt2-medium-dutch-nedd", | |
"desc": "Dutch GPT2 Medium", | |
"story_generator": None, | |
}, | |
# { | |
# "model_name": "yhavinga/gpt-neo-125M-dutch", | |
# "desc": "Dutch GPTNeo Small", | |
# "story_generator": None, | |
# }, | |
# { | |
# "model_name": "yhavinga/gpt2-medium-dutch", | |
# "desc": "Dutch GPT2 Medium", | |
# "story_generator": None, | |
# }, | |
] | |
def instantiate_models(): | |
for sg in STORY_GENERATORS: | |
sg["story_generator"] = StoryGenerator(sg["model_name"]) | |
with st.spinner(text=f"Loading the model {sg['desc']} ..."): | |
sg["story_generator"].load() | |
def set_new_seed(): | |
seed = randint(0, 2 ** 32 - 1) | |
set_seed(seed) | |
return seed | |
def main(): | |
st.set_page_config( # Alternate names: setup_page, page, layout | |
page_title="Netherator", # String or None. Strings get appended with "β’ Streamlit". | |
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc. | |
initial_sidebar_state="expanded", # Can be "auto", "expanded", "collapsed" | |
page_icon="π", # String, anything supported by st.image, or None. | |
) | |
instantiate_models() | |
with open("style.css") as f: | |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) | |
st.sidebar.image("demon-reading-Stewart-Orr.png", width=200) | |
st.sidebar.markdown( | |
"""# Netherator | |
Teller of tales from the Netherlands""" | |
) | |
model_desc = st.sidebar.selectbox( | |
"Model", [sg["desc"] for sg in STORY_GENERATORS], index=1 | |
) | |
st.sidebar.title("Parameters:") | |
if "prompt_box" not in st.session_state: | |
st.session_state["prompt_box"] = "Het was een koude winterdag" | |
st.session_state["text"] = st.text_area("Enter text", st.session_state.prompt_box) | |
# min_length = st.sidebar.number_input( | |
# "Min length", min_value=10, max_value=150, value=75 | |
# ) | |
max_length = st.sidebar.number_input( | |
"Lengte van de tekst", | |
value=300, | |
max_value=512, | |
) | |
no_repeat_ngram_size = st.sidebar.number_input( | |
"No-repeat NGram size", min_value=1, max_value=5, value=3 | |
) | |
repetition_penalty = st.sidebar.number_input( | |
"Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1 | |
) | |
num_return_sequences = st.sidebar.number_input( | |
"Num return sequences", min_value=1, max_value=5, value=1 | |
) | |
if sampling_mode := st.sidebar.selectbox( | |
"select a Mode", index=0, options=["Top-k Sampling", "Beam Search"] | |
): | |
if sampling_mode == "Beam Search": | |
num_beams = st.sidebar.number_input( | |
"Num beams", min_value=1, max_value=10, value=4 | |
) | |
length_penalty = st.sidebar.number_input( | |
"Length penalty", min_value=0.0, max_value=5.0, value=1.5, step=0.1 | |
) | |
params = { | |
"max_length": max_length, | |
"no_repeat_ngram_size": no_repeat_ngram_size, | |
"repetition_penalty": repetition_penalty, | |
"num_return_sequences": num_return_sequences, | |
"num_beams": num_beams, | |
"early_stopping": True, | |
"length_penalty": length_penalty, | |
} | |
else: | |
top_k = st.sidebar.number_input( | |
"Top K", min_value=0, max_value=100, value=50 | |
) | |
top_p = st.sidebar.number_input( | |
"Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05 | |
) | |
temperature = st.sidebar.number_input( | |
"Temperature", min_value=0.05, max_value=1.0, value=0.8, step=0.05 | |
) | |
params = { | |
"max_length": max_length, | |
"no_repeat_ngram_size": no_repeat_ngram_size, | |
"repetition_penalty": repetition_penalty, | |
"num_return_sequences": num_return_sequences, | |
"do_sample": True, | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temperature, | |
} | |
st.sidebar.markdown( | |
"""For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate) | |
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate). | |
""" | |
) | |
if st.button("Run"): | |
estimate = max_length / 18 | |
if device == -1: | |
## cpu | |
estimate = estimate * (1 + 0.7 * (num_return_sequences - 1)) | |
if sampling_mode == "Beam Search": | |
estimate = estimate * (1.1 + 0.3 * (num_beams - 1)) | |
else: | |
## gpu | |
estimate = estimate * (1 + 0.1 * (num_return_sequences - 1)) | |
estimate = 0.5 + estimate / 5 | |
if sampling_mode == "Beam Search": | |
estimate = estimate * (1.0 + 0.1 * (num_beams - 1)) | |
estimate = int(estimate) | |
with st.spinner( | |
text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..." | |
): | |
memory = psutil.virtual_memory() | |
story_generator = next( | |
( | |
x["story_generator"] | |
for x in STORY_GENERATORS | |
if x["desc"] == model_desc | |
), | |
None, | |
) | |
seed = set_new_seed() | |
time_start = time.time() | |
result = story_generator.get_text(text=st.session_state.text, **params) | |
time_end = time.time() | |
time_diff = time_end - time_start | |
st.subheader("Result") | |
for text in result: | |
st.write(text.get("generated_text").replace("\n", " \n")) | |
# st.text("*Translation*") | |
# translation = translate(result, "en", "nl") | |
# st.write(translation.replace("\n", " \n")) | |
# | |
info = f""" | |
--- | |
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB* | |
*Text generated using seed {seed} in {time_diff:.5} seconds* | |
""" | |
st.write(info) | |
params["seed"] = seed | |
params["prompt"] = st.session_state.text | |
params["model"] = story_generator.model_name | |
params_text = json.dumps(params) | |
print(params_text) | |
st.json(params_text) | |
if __name__ == "__main__": | |
main() | |