File size: 4,018 Bytes
b55d531
b0bbdeb
 
b55d531
9ddb9de
b55d531
 
 
 
 
 
9ddb9de
7ed7122
 
 
b55d531
 
 
 
 
0bba696
 
b0bbdeb
 
 
 
 
0bba696
b0bbdeb
 
0bba696
b0bbdeb
0bba696
48312c4
 
7ed7122
b55d531
 
 
f3231bf
 
 
 
 
b55d531
7ed7122
7461ece
0bba696
5e5253c
0bba696
5d603eb
0bba696
5e5253c
0bba696
cfc71a1
0bba696
 
 
 
b0bbdeb
7461ece
7ed7122
7461ece
7ed7122
9ddb9de
7461ece
 
7ed7122
7461ece
 
 
 
 
 
b55d531
48312c4
 
 
5737001
48312c4
 
 
5737001
48312c4
9ddb9de
b55d531
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import gradio as gr
import os
import shutil

def mock_question_answer(question, history):
    # 假資料模擬回答
    answers = {
        "文件的核心觀點是什麼?": "這份文件的核心觀點是關於人工智慧如何提升工作效率。",
        "有哪些關鍵詞或數據?": "關鍵詞包括:人工智慧、工作效率、數據分析。",
        "文件的摘要是什麼?": "這份文件討論了如何利用人工智慧工具,提升企業的運營效率和決策速度。"
    }
    response = answers.get(question, "抱歉,我無法回答這個問題。請嘗試其他問題!")
    history.append({"role": "user", "content": question})
    history.append({"role": "assistant", "content": response})
    return history, ""

def mock_summary():
    # 假資料模擬摘要
    return "這份文件主要討論人工智慧在工作效率提升方面的應用,並提供了實際案例來說明其價值。"

def add_to_file_list(file, file_list):
    if file:
        temp_path = f"/tmp/{file.name}"
        shutil.copy(file.name, temp_path)  # 將文件存儲到 /tmp
        file_list.append(temp_path)
    display_list = [os.path.basename(path) for path in file_list]
    return gr.update(choices=display_list), None  # 清空文件選擇框

def process_selected_files(selected_files, file_list):
    selected_paths = [path for path in file_list if os.path.basename(path) in selected_files]
    # 假資料模擬處理 RAG
    return f"已處理的文件: {', '.join(selected_paths)}"

def toggle_visibility(current_state):
    return gr.update(visible=not current_state)

with gr.Blocks() as demo:
    gr.Markdown("# AI Notes Assistant")

    with gr.Row():
        toggle_sources = gr.Button("顯示/隱藏 來源選單")
        toggle_chat = gr.Button("顯示/隱藏 對話區域")
        toggle_features = gr.Button("顯示/隱藏 功能卡片")

    with gr.Row():
        with gr.Column(visible=True) as source_column:
            gr.Markdown("### 來源選單")

            file_list = gr.State([])

            upload_file = gr.File(label="從電腦添加文件", file_types=[".txt", ".pdf", ".docx"])
            add_file_button = gr.Button("添加到來源列表")
            file_display = gr.CheckboxGroup(label="已上傳的文件", interactive=True)

            add_file_button.click(add_to_file_list, inputs=[upload_file, file_list], outputs=[file_display, upload_file])

            rag_button = gr.Button("處理選擇的文件")
            rag_result = gr.Textbox(label="處理結果", interactive=False)

            rag_button.click(process_selected_files, inputs=[file_display, file_list], outputs=[rag_result])

        with gr.Column(visible=True) as chat_column:
            gr.Markdown("### 對話區域")
            chatbot = gr.Chatbot(label="聊天記錄", type="messages")
            question = gr.Textbox(label="輸入問題,例如:文件的核心觀點是什麼?")
            ask_button = gr.Button("提問")

        with gr.Column(visible=True) as feature_column:
            gr.Markdown("### 功能卡片")
            with gr.Tab("摘要生成"):
                summary_button = gr.Button("生成摘要")
                summary = gr.Textbox(label="摘要", interactive=False)
            with gr.Tab("其他功能"):
                gr.Markdown("此處可以添加更多功能卡片")

    source_visible = gr.State(True)
    chat_visible = gr.State(True)
    feature_visible = gr.State(True)

    toggle_sources.click(toggle_visibility, inputs=source_visible, outputs=[source_column, source_visible])
    toggle_chat.click(toggle_visibility, inputs=chat_visible, outputs=[chat_column, chat_visible])
    toggle_features.click(toggle_visibility, inputs=feature_visible, outputs=[feature_column, feature_visible])

    history = gr.State([])
    ask_button.click(mock_question_answer, inputs=[question, history], outputs=[chatbot, chatbot])
    summary_button.click(mock_summary, inputs=[], outputs=[summary])

demo.launch()