Spaces:
Configuration error
Configuration error
File size: 7,457 Bytes
37a1e1f 2301b77 f746958 37a1e1f 074a81a 37a1e1f 074a81a 37a1e1f 36c4845 074a81a 37a1e1f 8c46c8a 074a81a fc4c790 0417f88 8c46c8a 797e0cc 8c46c8a 87f9867 37a1e1f 720c562 2301b77 8c46c8a 242fe28 2301b77 edd39e5 5ecdabf b12d0df 87f9867 720c562 7722e4b 8c46c8a bef75dc 409a131 720c562 37a1e1f ba8b2ea 2a4ca20 bef75dc 0e7df92 2301b77 2a4ca20 37a1e1f 720c562 86dbb58 12bf04e e7da559 37a1e1f 12bf04e fc4c790 dbedcf7 fc4c790 dbedcf7 bef75dc 2301b77 bef75dc 86dbb58 2301b77 fc4c790 37a1e1f 074a81a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
from diffusers import StableDiffusionPipeline
from lora_diffusion import monkeypatch_lora, tune_lora_scale
import torch
import os, shutil
import gradio as gr
import subprocess
MODEL_NAME="stabilityai/stable-diffusion-2-1-base"
INSTANCE_DIR="./data_example"
OUTPUT_DIR="./output_example"
model_id = "stabilityai/stable-diffusion-2-1-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
#prompt = "style of sks, baby lion"
torch.manual_seed(1)
#image = pipe(prompt, num_inference_steps=50, guidance_scale= 7).images[0] #no need
#image # nice. diffusers are cool. #no need
#finetuned_lora_weights = "./lora_weight.pt"
#global var
counter = 0
#Getting Lora fine-tuned weights
def monkeypatching(alpha, in_prompt, wt): #, prompt, pipe): finetuned_lora_weights
print("****** inside monkeypatching *******")
print(f"in_prompt is - {str(in_prompt)}")
global counter
if counter == 0 :
#if wt == "./lora_playgroundai_wt.pt" :
monkeypatch_lora(pipe.unet, torch.load(wt)) #finetuned_lora_weights
tune_lora_scale(pipe.unet, alpha) #1.00)
counter +=1
#else:
#monkeypatch_lora(pipe.unet, torch.load("./output_example/lora_weight.pt")) #finetuned_lora_weights
#tune_lora_scale(pipe.unet, alpha) #1.00)
#counter +=1
else :
tune_lora_scale(pipe.unet, alpha) #1.00)
prompt = "style of hclu, " + str(in_prompt) #"baby lion"
image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0]
image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg")
return image
def accelerate_train_lora(steps, images):
print("*********** inside accelerate_train_lora ***********")
# path can be retrieved by file_obj.name and original filename can be retrieved with file_obj.orig_name
for file in images:
shutil.copy( file.name, './data_example') #/{file.orig_name}
#subprocess.Popen(f'accelerate launch {"./train_lora_dreambooth.py"} \
os.system( f'accelerate launch {"./train_lora_dreambooth.py"} \
--pretrained_model_name_or_path={MODEL_NAME} \
--instance_data_dir={INSTANCE_DIR} \
--output_dir={OUTPUT_DIR} \
--instance_prompt="style of hclu" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-4 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps={int(steps)}') #,shell=True) #30000
print("*********** completing accelerate_train_lora ***********")
#lora_trained_weights = "./output_example/lora_weight.pt"
for file in os.listdir(f"{OUTPUT_DIR}"):
if file.endswith(".pt"):
print(os.path.join(f"{OUTPUT_DIR}", file))
return file
#return f"{OUTPUT_DIR}/*.pt"
with gr.Blocks() as demo:
gr.Markdown("""<h1><center>LORA - Low-rank Adaptation for Fast Text-to-Image Diffusion Fine-tuning</center></h1>
""")
gr.HTML("<p>You can skip the queue by duplicating this space and upgrading to gpu in settings: <a style='display:inline-block' href='https://huggingface.co/spaces/ysharma/Low-rank-Adaptation?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>")
gr.Markdown("""<b>NEW!!</b> : I have fine-tuned the SD model for 15,000 steps using 100 PlaygroundAI images and LORA. You can load this trained model using the example component. Load the weight and start using the Space with the Inference button. Feel free to toggle the Alpha value.""")
gr.Markdown(
"""**Main Features**<br>- Fine-tune Stable diffusion models twice as faster as dreambooth method by Low-rank Adaptation.<br>- Get insanely small end results, easy to share and download.<br>- Easy to use, compatible with diffusers.<br>- Sometimes even better performance than full fine-tuning<br><br>Please refer to the GitHub repo this Space is based on, here - <a href = "https://github.com/cloneofsimo/lora">LORA</a>. You can also refer to this tweet by AK to quote/retweet/like here on <a href="https://twitter.com/_akhaliq/status/1601120767009513472">Twitter</a>.This Gradio Space is an attempt to explore this novel LORA approach to fine-tune Stable diffusion models, using the power and flexibility of Gradio! The higher number of steps results in longer training time and better fine-tuned SD models.<br><br><b>To use this Space well:</b><br>- First, upload your set of images (4-5), then enter the number of fine-tuning steps, and then press the 'Train LORA model' button. This will produce your fine-tuned model weights.<br>- Enter a prompt, set the alpha value using the Slider (nearer to 1 implies overfitting to the uploaded images), and then press the 'Inference' button. This will produce an image by the newly fine-tuned model.<br><b>Bonus:</b>You can download your fine-tuned model weights from the Gradio file component. The smaller size of LORA models (around 3-4 MB files) is the main highlight of this 'Low-rank Adaptation' approach of fine-tuning.""")
with gr.Row():
in_images = gr.File(label="Upload images to fine-tune for LORA", file_count="multiple")
with gr.Column():
b1 = gr.Button(value="Train LORA model")
in_prompt = gr.Textbox(label="Enter a prompt for fine-tuned LORA model", visible=True)
b2 = gr.Button(value="Inference using LORA model")
with gr.Row():
out_image = gr.Image(label="Image generated by LORA model")
with gr.Column():
with gr.Accordion("Advance settings for Training and Inference", open=False):
gr.Markdown("Advance settings for a number of Training Steps and Alpha. Set alpha to 1.0 to fully add LORA. If the LORA seems to have too much effect (i.e., overfitting), set alpha to a lower value. If the LORA seems to have too little effect, set the alpha higher. You can tune these two values to your needs.")
in_steps = gr.Number(label="Enter the number of training steps", value = 4000)
in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level", value=0.5)
out_file = gr.File(label="Lora trained model weights" )
gr.Examples(
examples=[[0.65, "lion", "./lora_playgroundai_wt.pt" ]],
inputs=[in_alpha, in_prompt, out_file],
outputs=out_image,
fn=monkeypatching,
cache_examples=True,)
gr.Examples(
examples=[[4000, ['./simba1.jpg', './simba2.jpg', './simba3.jpg', './simba4.jpg']]],
inputs=[in_steps, in_images],
outputs=out_file,
fn=accelerate_train_lora,
cache_examples=True,)
b1.click(fn = accelerate_train_lora, inputs=[in_steps, in_images] , outputs=out_file)
b2.click(fn = monkeypatching, inputs=[in_alpha, in_prompt, out_file], outputs=out_image)
demo.queue(concurrency_count=3)
demo.launch(debug=True, show_error=True) |