Spaces:
Running
on
Zero
Running
on
Zero
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from ...modules.autoencoding.lpips.loss.lpips import LPIPS | |
from ...modules.encoders.modules import GeneralConditioner | |
from ...util import append_dims, instantiate_from_config | |
from .denoiser import Denoiser | |
from transport import create_transport, Sampler | |
from pdb import set_trace as st | |
class FMLoss(nn.Module): | |
def __init__(self, transport_config): | |
super().__init__() | |
self.transport = instantiate_from_config(transport_config) | |
def _forward( | |
self, | |
network: nn.Module, | |
cond: Dict, | |
input: torch.Tensor, | |
batch: Dict, | |
) -> Tuple[torch.Tensor, Dict]: | |
# additional_model_inputs = { | |
# key: batch[key] for key in self.batch2model_keys.intersection(batch) | |
# } | |
model_kwargs = dict(context=cond) | |
loss_dict = self.transport.training_losses(network, input, model_kwargs) | |
# st() # check transport and model_kwargs whether OK | |
loss = loss_dict["loss"].mean() | |
return loss, loss_dict | |
def forward( | |
self, | |
network: nn.Module, | |
# denoiser: Denoiser, | |
conditioner: GeneralConditioner, | |
input: torch.Tensor, | |
batch: Dict, | |
) -> torch.Tensor: | |
cond = conditioner(batch) | |
return self._forward(network, cond, input, batch) | |
class StandardDiffusionLoss(nn.Module): | |
def __init__( | |
self, | |
sigma_sampler_config: dict, | |
loss_weighting_config: dict, | |
loss_type: str = "l2", | |
offset_noise_level: float = 0.0, | |
batch2model_keys: Optional[Union[str, List[str]]] = None, | |
): | |
super().__init__() | |
assert loss_type in ["l2", "l1", "lpips"] | |
self.sigma_sampler = instantiate_from_config(sigma_sampler_config) | |
self.loss_weighting = instantiate_from_config(loss_weighting_config) | |
self.loss_type = loss_type | |
self.offset_noise_level = offset_noise_level | |
if loss_type == "lpips": | |
self.lpips = LPIPS().eval() | |
if not batch2model_keys: | |
batch2model_keys = [] | |
if isinstance(batch2model_keys, str): | |
batch2model_keys = [batch2model_keys] | |
self.batch2model_keys = set(batch2model_keys) | |
def get_noised_input( | |
self, sigmas_bc: torch.Tensor, noise: torch.Tensor, input: torch.Tensor | |
) -> torch.Tensor: | |
noised_input = input + noise * sigmas_bc | |
return noised_input | |
def forward( | |
self, | |
network: nn.Module, | |
denoiser: Denoiser, | |
conditioner: GeneralConditioner, | |
input: torch.Tensor, | |
batch: Dict, | |
) -> torch.Tensor: | |
cond = conditioner(batch) | |
return self._forward(network, denoiser, cond, input, batch) | |
def _forward( | |
self, | |
network: nn.Module, | |
denoiser: Denoiser, | |
cond: Dict, | |
input: torch.Tensor, | |
batch: Dict, | |
) -> Tuple[torch.Tensor, Dict]: | |
additional_model_inputs = { | |
key: batch[key] for key in self.batch2model_keys.intersection(batch) | |
} | |
sigmas = self.sigma_sampler(input.shape[0]).to(input) | |
noise = torch.randn_like(input) | |
if self.offset_noise_level > 0.0: | |
offset_shape = ( | |
(input.shape[0], 1, input.shape[2]) | |
if self.n_frames is not None | |
else (input.shape[0], input.shape[1]) | |
) | |
noise = noise + self.offset_noise_level * append_dims( | |
torch.randn(offset_shape, device=input.device), | |
input.ndim, | |
) | |
sigmas_bc = append_dims(sigmas, input.ndim) | |
noised_input = self.get_noised_input(sigmas_bc, noise, input) | |
model_output = denoiser( | |
network, noised_input, sigmas, cond, **additional_model_inputs | |
) | |
w = append_dims(self.loss_weighting(sigmas), input.ndim) | |
return self.get_loss(model_output, input, w), { | |
'noised_input': noised_input, | |
'sigmas': sigmas, | |
'noise': noise, | |
'model_output': model_output, # x_start | |
} | |
def get_loss(self, model_output, target, w): | |
if self.loss_type == "l2": | |
return torch.mean( | |
(w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1 | |
) | |
elif self.loss_type == "l1": | |
return torch.mean( | |
(w * (model_output - target).abs()).reshape(target.shape[0], -1), 1 | |
) | |
elif self.loss_type == "lpips": | |
loss = self.lpips(model_output, target).reshape(-1) | |
return loss | |
else: | |
raise NotImplementedError(f"Unknown loss type {self.loss_type}") | |